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AXIOMATIC DEFINITION OF SETS

Se Hwa Chung*

Abstract. The aim of this paper is to give an alternative definition
of sets as follows: A domain is a set if and only if it belongs to Set.

1. Introduction

According to [3, 6], set theory was invented by Georg Cantor in his
main publications appearing between 1874 and 1897. Between 1895
and 1910 a number of contradictions were discovered in various parts of
set theory by B. Russell, C. Burali-Forti, G. G. Berry and G. Cantor
himself. The discovery of the antinomy made it clear that a revision
of the principles of Cantor set theory was necessary. The attempt to
improve set theory which is best known among mathematicians is the
axiomatic theory first set forth by E. Zermelo in 1908. After Zermelo,
the axiomatic set theory has been developed by T. Skolem, A. Fraenkel,
J. von Neumann, P. Beranys, K Gödel, etc.

Zermelo-Fraenkel set theory, with certain modification due to T.
Skolem and A. Fraenkel and J. von Neumann, is widely used up to
the present day (cf. [2, 4, 5] and see also [8]).

E. Zermelo did not decisively give the definition of a set but con-
structed sets using axioms. On the other hand, an axiomatic definition
of a set was given by von Neumann as follows(cf. [3, 4, 6]):

A class is a set if and only if it belongs to a class.
Nevertheless, mathematicians are still forced to face two questions:
(1) What properties legitimately define sets?
(2) Does there exist the class (or set) X of sets which does not have

the peculiar property that X ∈ X ?
The aim of this paper is to give an alternative answer to these ques-

tions as follows:
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A domain is a set if and only if it belongs to Set.

Further we show that Set provides a firm foundation for a system of set
theory which include all of Cantor’s basic results as well as the construc-
tions needed for contemporary mathematics.

This paper is organized as follows: Section 2 is devoted to give no-
tations, axioms and definitions. In section 3, we give two concepts: one
is the concept of domain, and the other is a concept of sieve. We adopt
axiom of sieve to guarantee the existence of sieve and then we show that
every sieve implies all axioms of Zermelo-Fraenkel set theory except ax-
ioms of regularity and replacement. In section 4, we give an alternative
definition of ordinals and show that every sieve holds for significant con-
sequences of axioms of replacement. Section 5 is devoted to define a
concept of sets.

2. Preliminaries

Terminology and theorems are adopted from [2, 4, 5, 8] if not ex-
plained in this paper. In this section, we give basic and important no-
tations, definitions and two axioms and choose two undefined notions:
the word class and membership relation ∈ , which is read ’is an element
of’ or ’belongs to.’ From here on, lower-case letters s, t, x, y, ... will be
used only to designate elements and capital-letters X, Y , ... may denote
either an element or a class which is not an element.

Definition 2.1. x /∈ X if and only if it is false that x ∈ X.

Definition 2.2. X = Y if and only if for each z, z ∈ X if and only
if z ∈ Y

Definition 2.3. X 6= Y if it is false that X = Y .

Definition 2.4. X ⊆ Y if and only if for each z, if z ∈ X, then
z ∈ Y . In this case, X is called a subclass of Y .

Definition 2.5. X ⊂ Y if and only if X ⊆ Y and X 6= Y . In this
case, X is called a proper subclass of Y .

In the rest of this section, we state two axioms which are founded in
[4] (see also [7]) and give a few of their elementary consequences.

Axiom of Extensionality. If x = y and x ∈ Z, then y ∈ Z.
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Axiom of Classification. Let P (x) be built up from atomic propo-
sitions of the form s ∈ t by use of the logical connectives ∨, ∧, ¬, → (or,
and, not, if-then), the quantifiers ∃, ∀ (for some, for all), brackets and
variables x, y, ..., A, B, ... Then for each x,

x ∈ {y : P (y)} if and only if P (x) and x ∈ z for some class z.

Throughout this paper, we need the following definitions:

Definition 2.6.
1) ∅ is a unique class such that for each x, x /∈ ∅.
2) For any class X, p(X) is a unique class such that z ∈ p(X) if and

only if z ⊆ X.
3) For any class X, ∪X is a unique class such that s ∈ ∪X if and

only if there exists x ∈ X such that s ∈ x.
4) For any classes s and t, X is a unique class such that x ∈ X if and

only if x = s or x = t.
5) For any classes X and Y , X − Y is a unique class such that x ∈

X − Y if and only if x ∈ X and x /∈ Y .
6) For any classes X and Y , X × Y is a unique class such that z ∈

X × Y if and only if z = (x, y), x ∈ X and y ∈ Y , where (x, y)
denotes {{x}, {x, y}}.

Definition 2.7. A subclass f ⊆ X × Y is called a function from X
to Y if it satisfies the following conditions:

1) for each x ∈ X, there exists y ∈ Y such that (x, y) ∈ f .
2) if (x, y) ∈ f and (x, z) ∈ f , then y = z.
In this case, we write f : X → Y , and y = f(x) stands for (x, y) ∈ f .

In particular, if X = Y , then f is called an unary operation on X, and
xf = y stands for (x, y) ∈ f .

3. Domains and sieves

In this section, we give two concepts: One is a concept of domain,
and the other is a concept of sieve. We show that every sieve implies all
axioms of Zermelo-Fraenkel set theory except both axiom of regularity
and axiom of replacement, and every sieve holds significant consequences
of axiom of regularity. For these purpose, we first introduce a concept
of domain which implies the most significant consequence of regularity
axiom.

Definition 3.1. A class n is called a chain if it satisfies the following:
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1) there exists an element x ∈ n such that x ∈ x and x ∈ s for all
s ∈ n,

2) if s ∈ n and t ∈ n, then s ∈ t or t ∈ s, and
3) there exists an element e ∈ n such that t ∈ e for all t ∈ n.
4) if s ∈ n then there is t ∈ n such that z = s or z = t whenever

s ∈ z ∈ t.

Notation. For a chain n, the class e ∈ n satisfying condition 3) of
the above definition denotes en. That is, e = en.

Example 3.2.
1) If x ∈ x, then {x} is a chain and e{x} = x.
2) Let n be the class such that t ∈ n if and only if t = x or t = y. If

x ∈ x and x ∈ y, then n is a chain and en = y.

Definition 3.3. A class X is called proper if there is a chain n such
that en ∈ X. Otherwise, it is called a domain.

Example 3.4.
1) Every chain is proper.
2) ∅, {∅} and {∅, {∅}} are domains.

Remark 3.5. If X is a domain, there is no class s such that s ∈ s ∈ X.
and so every domain does not belong to itself. This is a significant
consequence of axiom of regularity.

Now we characterize properties of domains:

Theorem 3.6.
1) A class X is a domain if and only if every element of X is a domain.
2) A class X is a domain if and only if p(X) is a domain.

Proof. 1) Let us assume that there exists a proper class t of X. Then
there is a chain n such that en ∈ t. Let m = n∪ {t}. Then m is a chain
such that em = t. However, it is impossible because X is a domain and
t = em ∈ X. The other implication is immediate from the definition of
domains.

2) Suppose p(X) is proper, then there is a chain n such that en ∈
p(X). If n = {en}, then en ∈ en and hence en ∈ X because en ⊆ X.
Thus X is proper, which is impossible because X is a domain. If {en} ⊂
n, then since n is a chain, there is an element t ∈ n such that z = t and
z 6= en whenever t ∈ z ∈ en. Let Let m = n− {en}. Then m is a chain
such that em = t. Since en ⊆ X and em ∈ en, em ∈ X and hence X
is proper, which is impossible, because X is a domain. Thus p(X) is a
domain. The converse is immediate from part 1) of this theorem.
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The following is immediate from the above theorem:

Corollary 3.7. One has the following:

1) X and Y are domains if and only if {X, Y } is a domain.
2) X and Y are domains if and only if X ∪ Y is a domain.
3) X is domain if and only if ∪X is a domain.
4) If Z is a class of domains, then there is a domain Y such that

Y /∈ Z.

Remark 3.8.
1) By Example 3.4.2, Theorem 3.6 and Corollary 3.7, there exist in-

finitely many domains.
2) By part 4) of the above corollary, the class of all the domains does

not exist.

The following definitions are the most essential concepts in this paper.

Definition 3.9. Let S and X be domains. Then X is said to be:
1) S-weak transitive if there exists z ∈ S such that t ⊆ z whenever

t ∈ X.
2) S-transitive if X ⊂ S and x ⊂ X whenever x ∈ X.

Remark 3.10.
1) It is easy to show that if T ⊆ S, then every T -(weak) transitive

domain is S-(weak) transitive.
2) It is easy to show that if x is S-transitive, then ∪x ⊆ x.
3) If x ∈ S and x is S-transitive, then x is S-weak transitive.

Notation. For a S-transitive domain X, let

l(X) = ∪{t ∈ X : t = ∪t}.
Using Definition 3.9 and the above notation, we define the main con-

cept as follows:

Definition 3.11. A domain S is called a sieve if it satisfies the fol-
lowing conditions:

1) S 6= ∅.
2) For any domain x and y, not necessarily distinct, x ∈ S and y ∈ S

if and only if (T1) x ∪ y is S-weak transitive or (T2) S-transitive
such that l(x) ∈ x and l(y) ∈ y.

In order to guarantee the existence of the sieve, we now adopt the
following axiom:
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Axiom of Sieve. There exists a sieve.

In the rest of this section, S denotes a sieve and we assume that every
class is a domain.

Remark 3.12.
1) Note that if s = t, then s ∪ t = t. Hence, by condition 2) of

Definition 3.11, it is clear that t ∈ S if and only if t is S-weak
transitive or S-transitive such that l(t) ∈ t.

2) It is clear that every element of S is S-weak transitive.
3) Since S is a domain, S /∈ S and, by Theorem 3.6, every element of

S is also a domain, so if x ∈ S, then x /∈ x.

Now, using the above remark, we characterize the properties of S:

Theorem 3.13. One has the following:

1) ∅ ∈ S.
2) If x ∈ S and y ⊂ x, then y ∈ S.
3) x ⊂ S whenever x ∈ S .
4) x ∈ S if and only if p(x) ∈ S .
5) x ∈ S if and only if ∪x ∈ S.
6) x ∈ S and y ∈ S if and only if {x, y} ∈ S.

Proof. 1) Since S 6= ∅, ∅ is S-weak transitive and hence ∅ ∈ S.
2) If x is S-weak transitive, then there exists z ∈ S such that x ⊆ p(z)

and so y ⊆ p(z) because y ⊆ x. Thus y is also S-weak transitive and
hence y ∈ S. If x is S-transitive, then s ⊂ x for all s ∈ x. Since y ⊆ x,
t ⊂ x for all t ∈ y. Since x ∈ S, y is S-weak transitive and so y ∈ S.

3) If x is S-transitive, then s ⊂ x for all s ∈ x and hence, by part 2)
of this theorem, s ∈ S for all s ∈ x. Since S is domain, x ⊂ S. If x is
S-weak transitive, there exists z ∈ S such that x ⊆ p(z). Since z ∈ S
and S is a domain, x ⊂ S.

4) Since x ∈ S, p(x) is S-weak transitive and so p(x) ∈ S. The
converse is immediate from part 3) of this theorem.

5) If x is S-weak transitive, then there exists z ∈ S such that x ⊆ p(z).
Since, for each s ∈ ∪x, there exists a ∈ x such that s ∈ a, s ∈ z and
hence ∪x ⊆ z. Since z ∈ S, by part 2) of this theorem, ∪x ∈ S. If x
is S-transitive, then ∪x ⊆ x. Since x ∈ S, by part 2) of this theorem,
∪x ∈ S. The converse is immediate from the definition of ∪x and part
1) of Remark 3.12.

6) If x ∈ S and y ∈ S, then, by part 1) of Remark 3.12, x ∪ y ∈ S and
hence, by part 4) of this theorem, p(x∪ y) ∈ S. Since {x, y} ⊆ p(x∪ y),
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by part 2) of this theorem, {x, y} ∈ S. The converse is immediate from
part 3) of this theorem.

Remark 3.14.
1) It is immediate from part 6) of the above theorem that {x} ∈ S

whenever x ∈ S.
2) Part 3) of the above theorem means that every element of S is

hereditarily in S (cf. [1]).

4. S-ordinals

In this section, we give an alternative definition of ordinals and every
sieve holds significant consequences of axiom of replacement. We first
modify a definition of ordinals as follows (cf. [1], [2], [4] and [8]):

Definition 4.1.
1) A domain X is a S-ordinal if it satisfies the following:

O1) it is S-transitive,
O2) its elements are S-transitive, and
O3) tr(X) ⊆ X, where tr(X) denotes the domain all of whose

elements are S-transitive proper subclass of X.
2) An S-ordinal X is called a limit S-ordinal if X = ∪X. Otherwise,

it is called a successor S-ordinal.

The proof of the following is exactly the same as the proof of Theorem
110 in [4].

Theorem 4.2. If x is a S-ordinal, y is a S-ordinal and x 6= y then
x ∈ y or y ∈ x.

By axiom of classification and the above theorem, there exists the
class OrS of all S-ordinals. It is clear that OrS = ∪OrS . Also, since ∅ is
a S-ordinal, {{∅}} ∈ S and {{∅}} /∈ OrS , ∅ 6= OrS ⊂ S. Thus OrS is a
S-ordinal and OrS /∈ OrS . We now show that OrS is the only S-ordinal
which does not belong to S.

Theorem 4.3. OrS /∈ S.

Proof. Suppose OrS ∈ S, then OrS ∈ OrS . This is impossible. Hence
OrS /∈ S.

Remark 4.4. The above theorem means that OrS is not S-weak
transitive and l(OrS) = OrS . Theorems 4.2 and 4.3 mean that OrS is
the only S-ordinal which does not belong to S.
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Now we consider the axiom of replacement. It is well known [3, 6]
that A. Fraenkel and T. Skolem had independently proposed adjoining
replacement axiom to establish that

Eω = {ω, p(ω), p(p(ω)), ...}
be a set since, as they pointed out, Zermelo’s axioms cannot establish
this. However, even E∅ cannot be proved to be a set from Zermelo’s
axioms. Also the ordinal number ω2, which is the set of all ω + n for all
n ∈ ω, is the first ordinal that cannot be constructed without Replace-
ment. In fact, Replacement has been latterly regarded as somehow less
necessary or crucial than the other axioms, the purported effect of the
axiom being only on large-cardinality sets [6].

In the rest of this section, we show that ordinals belong to S, including
ω and ω2, and {∅, {∅}, {{∅}}, ...} belongs to S, and if δ is a limit ordinal
which belongs to S, then

Eδ = {δ, p(δ), p(p(δ)), ...}
belongs to S.

We begin by giving a basic definition to define inductive domains:

Definition 4.5. Let X be a domain and f an unary operation on
X. Then a S-transitive element a of X is called the initial element with
respect to f if xf 6= a for each x ∈ X.

Notation. For a domain X and f an unary operation on X, iX
f

denotes the domain of initial elements of X with respect to f .

Definition 4.6. The triple (X, f, a) is called an inductive domain,
where X is a domain, f is an unary operation on X such that xf ∈ X
whenever x ∈ X and a ∈ iX

f .

In the next theorem, we show that there exists a domain which implies
the principle of mathematical induction stated as an axiom of the natural
numbers.

Theorem 4.7. Let (X, f, a) be an inductive domain. Then there
exists the inductive domain (G, f, a) such that if Y ⊆ G ⊆ X and
(Y, f, a) is an inductive domain, then G = Y .

Proof. Let G be the domain such that y ∈ G if and only if y ∈ Z
whenever (Z, f, a) is an inductive domain. Since (X, f, a) is an inductive
domain, G ⊆ X and hence iX

f ⊆ iG
f . Thus a ∈ iG

f . It is clear that gf ∈ G

whenever g ∈ G. Thus (G, f, a) is an inductive domain. If Y ⊆ G and
(Y, f, a) is an inductive domain, then, by the definition of G, G = Y .
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Definition 4.8. The inductive domain (G, f, a) given in the proof
of the above theorem is called a Peano domain of (X, f, a).

Remark 4.9. It is clear that (G, f, a) is a Peano domain then G ⊆
∪G.

In a sense, the concept of Peano domain is a generalization of Vaugh’s
Peano structure (cf. [8]).

Theorem 4.10. Let + be an unary operation on S defined by a+ =
a ∪ {a} for all a ∈ S. Then one has the following:

1) (S, +, ∅) is an inductive domain.
2) ∪S = S.
3) There exists a Peano domain (ω,+, ∅) such that ω ⊂ S.

Proof. 1) Clearly ∅ ∈ iS
+. Suppose a ∈ S, then by part 1) of Re-

mark 3.14 and condition 2) of Definition 3.11, a+ = a ∪ {a} ∈ S. Thus
(S, +, ∅) is an inductive domain.

2) It is immediate from 1) of this theorem and part 3) of Theorem
3.13.

3) Let T = S − {{{∅}}}. Then (T, +, ∅) is an inductive domain of
(S, +, ∅), because a+ 6= {{∅}} for all a ∈ S. Hence by Theorem 4.7,
there exists the Peano domain (ω,+, ∅) such that ω ⊂ S.

Theorem 4.11. Let b be an unary operation on S defined by xb = {x}
for all x ∈ S. Then one has the following:

1) (S, b, ∅) is an inductive domain.
2) There exists a Peano domain (β, b, ∅) such that β ⊂ S.

Proof. 1) Clearly ∅ ∈ iS
b . Suppose a ∈ S, then by part 1) of Remark

3.14, ab = {a} ∈ S. Thus (S, b, ∅) is inductive domain.
2) Let T = S − {{∅, {∅}}}. Then (T, b, ∅) is an inductive domain of

(S, b, ∅), because ab 6= {∅, {∅}} for all a ∈ S. Hence by Theorem 4.7,
there exists the Peano domain (β, b, ∅) such that β ⊂ S.

Remark 4.12. 1) ω is just the set of all the natural numbers.
2) β = {∅, {∅}, {{∅}}, ...}.
Theorem 4.13. Let (X, f, ∅) be a Peano domain such that t ∈ xf if

and only if t ∈ x or t = x. Then if X ⊂ S and l(X) ∈ X, then X ∈ S.

Proof. Let Z = {x ∈ X : x ⊂ X}. It is clear that ∅ ∈ Z. Suppose
x ∈ Z and t ∈ xf , then t = x or t ∈ x, and hence t ∈ X. Thus xf ⊂ X.
Since xf ∈ X, xf ∈ Z. Hence Z = X. Since X ⊂ S, X is S-transitive.
Since l(X) ∈ X. Thus X ∈ S.
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Using Theorems 4.10, 4.11 and the above theorem, we have at once the
following:

Corollary 4.14.
1) ω is a limit S-ordinal in S.
2) β ∈ S.

Proof. 1) By part 3) of Theorem 4.10, ω ⊂ S and it is clear that
t ∈ x+ if and only if t ∈ x or t = x. Since l(ω) = ∅ ∈ ω. Thus, by the
above theorem, ω ∈ S.

2) By part 2) of Theorem 4.11, β ⊂ S and it is clear that t ∈ xb if
and only if t = x. Since l(β) = {∅} ∈ β. Thus, by the above theorem,
β ∈ S.

Lemma 4.15. Let δ be a limit S-ordinal in S and (δ2, +, δ) a Peano
domain. Then δ2 ∈ S.

Proof. Since δ2 ⊂ S and l(δ2) = δ ∈ δ2, δ2 ∈ S.

Just as for Zermelo’s sets, we can now introduce the recursion theorem
for domain as follows (cf. [1], [2], [4] and [8]):

Theorem 4.16 (Recursion Theorem for Domain). Let A be a domain,
z a fixed element of A, and f a function from A to A. Then there exists
a unique function γ : ω → A such that

1. γ(∅) = z, and
2. γ(n+) = f(γ(n)), n ∈ ω.

The following is immediate from the above theorem:

Corollary 4.17. 1) For the Peano domain (Ea, p, a), where xp =
p(x), there exists a unique bijection δa : ω → Ea defined by the two
conditions:

1. δa(∅) = a, and
2. δa(n+) = [(δa(n)]p, n ∈ ω.

Notation. δa(n) = pn(a).

Lemma 4.18. Let a be a domain. Then for each n ∈ ω, a + n+ /∈
p(pn(a)).

Proof. Since a is a domain, a /∈ a. Let N = {n ∈ ω : a + n+ /∈
p(pn(a))}. Suppose a+ ∈ p(a), then a+ ⊆ a. Since a ∈ a+, a ∈ a.
This is impossible because a /∈ a. Thus ∅ ∈ N . Suppose n ∈ N and
a + [n+]+ ∈ p(pn+

(a)), then

a + [n+]+ ⊆ p(pn(a))
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and so a+n+ ∈ p(pn(a)). This is impossible, because a+n+ /∈ p(pn(a)).
Thus N = ω.

Theorem 4.19. Let (X, f, a) be a Peano domain such that l(∪X) ∈
∪X and ∪X ⊂ S, t ∈ xf if and only if t ⊆ x. Then X ∈ S.

Proof. Let Y be the class such that y ∈ Y if and only if y ∈ X and y is
S-transitive. It is clear that a ∈ Y . Suppose x ∈ Y and take any t ∈ xf ,
then t ⊆ x and hence if s ∈ t, then s ∈ x. Since x is S-transitive, s ⊂ x
and so s ∈ xf . Thus t ⊂ xf because xf is a domain. Therefore X = Y
and hence ∪X is also S-transitive. Since l(∪X) ∈ ∪X and ∪X ⊂ S,
∪X ∈ S. By part 2) of Theorem 3.13 and Remark 4.9, X ∈ S.

Corollary 4.20. Let δ be a limit S-ordinal and (Eδ, p, δ) a Peano
domain. Then Eδ ∈ S.

Proof. It is clear that for each x ∈ Eδ, t ∈ xp if and only if t ⊆ x
and l(∪Eδ) = δ ∈ Eδ. Suppose δ2 ∈ ∪Eδ, then δ2 ∈ p(pn(δ)) for some
n ∈ ω. Then δ + n+ ∈ p(pn(δ)) since δ + n+ ∈ δ2. This is impossible
because of Lemma 4.18. Thus δ2 /∈ ∪Eδ. Thus by the above theorem,
Eδ ∈ S.

Remark 4.21. It immediately follows from the above corollary that
∪E∅ ∈ S, E∅ ∈ S, ∪Eω ∈ S and Eω ∈ S.

5. Definition of sets

In this section, we show that there exists the smallest sieve with
respect to ⊆. Using the smallest sieve, we give a definition of sets.

Theorem 5.1. There is the sieve S such that, for each sieve D,
S ⊆ D.

Proof. Let S be a class such that x ∈ S if and only if x ∈ D for every
sieve D. Then it is a clear that for each sieve D, S ⊆ D and D is a
domain. Suppose x ∈ S and y ∈ S, then x ∈ D and y ∈ D for every sieve
D. Since D is a sieve, x ∪ y ∈ D and hence x ∪ y is D-weak transitive.
That is, for each sieve D, there is an element zD ∈ D such that t ⊆ zD

whenever t ∈ x∪ y. Let z be a class such that t ∈ z if and only if t ∈ zD

for every zD. It is clear that, for each zD, z ⊆ zD and so z ∈ D for every
sieve D. Hence z ∈ S and t ⊆ z whenever t ∈ x ∪ y. That is, x ∪ y is
S-weak transitive. Conversely, suppose x ∪ y is S-weak transitive, then
x∪y is D-weak transitive for every sieve D, and so x ∈ D and y ∈ D for
every sieve D. Thus, by the definition of S, x ∈ S and y ∈ S. Suppose
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x∪y is S-transitive, since, for each sieve D, S ⊆ D, x∪y is D-transitive
for every sieve D and so x ∈ D and y ∈ D for every sieve D. Thus, by
the definition of S, x ∈ S and y ∈ S. In all, S is a sieve and for each
sieve D, S ⊆ D.

Notation. The sieve given in the above theorem is denoted by Set.

Using Theorem 5.1 and the above notation, we can give the main
result of this paper as follows:

Definition 5.2. A domain x is called a set if x ∈ Set.

It is clear that Set is neither S-weak transitive nor S-transitive and
hence Set is a not set.

Finally we adopt axiom of choice:

Axiom of Choice. For any set x, there exists a function f defined
on x such that f(t) ∈ t for all t ∈ x such that t 6= ∅.

Notation. SetC is Set plus axiom of choice.

Conclusion Remark. According to Definition 3.11, every set is com-
pletely determined by two properties of transitivity and the concept of
domain. But the axiom of choice is not necessary to define set itself.
Condition (T1) of Definition 3.11 implies axioms: subset, union and
power and condition (T2) of Definition 3.11 implies axiom of infinity
and the significant consequences of the axiom of replacement. More-
over, Conditions (T1) and (T2) implies that every S-ordinal except OrS

is a set. The concept of domain implies that every set x satisfies the
property x /∈ x which is the important consequence of axiom of regular-
ity. Condition 2) of Definition 3.11 implies axiom of paring. By axiom
of classification, {x ∈ S : P (x)} exists. Consequently, we conclude that,
using only the laws of logic, SetC provides a firm foundation for a sys-
tem of set theory which include all of Cantor’s basic results as well as
the constructions needed for contemporary mathematics.
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