BOUNDEDNESS AND COMPACTNESS OF SOME TOEPLITZ OPERATORS

Si Ho Kang*

Abstract

We consider the problem to determine when a Toeplitz operator is bounded on weighted Bergman spaces. We introduce some set $C G$ of symbols and we prove that Toeplitz operators induced by elements of $C G$ are bounded and characterize when Toeplitz operators are compact and show that each element of $C G$ is related with a Carleson measure.

1. Introduction

Let $d A$ denote normalized Lebesgue area measure on the unit disk \mathbb{D}. For $\alpha>-1$, the weighted Bergman space A_{α}^{p} consists of the analytic functions in $L^{p}\left(\mathbb{D}, d A_{\alpha}\right)$, where $d A_{\alpha}(z)=(\alpha+1)\left(1-|z|^{2}\right)^{\alpha} d A(z)$. Since A_{α}^{2} is a closed subspace of $L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$, for any $z \in \mathbb{D}$, there is a unique function K_{z}^{α} in A_{α}^{2} such that $f(z)=<f, K_{z}^{\alpha}>$ for all $f \in A_{\alpha}^{2}$, in fact, $K_{z}^{\alpha}(w)=\frac{1}{(1-\bar{z} w)^{2+\alpha}}$ and the normalized reproducing kernel k_{z}^{α} is the function $\frac{K_{z}^{\alpha}(w)}{\left\|K_{z}^{\alpha}\right\|_{2, \alpha}}=\frac{\left(1-|z|^{2}\right)^{1+\frac{\alpha}{2}}}{(1-\bar{z} w)^{2+\alpha}}$, where the norm $\|\cdot\|_{p, \alpha}$ and the inner product are taken in the space $L^{p}\left(\mathbb{D}, d A_{\alpha}\right)$ and $L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$, respectively.

For a linear operator S on A_{α}^{2}, S induces a functions \widetilde{S} on \mathbb{D} given by $\widetilde{S}(z)=<S k_{z}^{\alpha}, k_{z}^{\alpha}>, z \in \mathbb{D}$. The function \widetilde{S} is called the Berezin transform of S.

[^0]For $u \in L^{1}\left(\mathbb{D}, d A_{\alpha}\right)$, the Toeplitz operator T_{u}^{α} with symbol u is the operator on A_{α}^{2} defined by $T_{u}^{\alpha}(f)=P_{\alpha}(u f), f \in A_{\alpha}^{2}$, where P_{α} is the orthogonal projection from $L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$ onto A_{α}^{2} and let \widetilde{u} denote $\widetilde{T_{u}^{\alpha}}$. Many mathematicians working in operator theory are interested in the boundedness and compactness of Toeplitz operators on the Bergman spaces. It is well-known that the Toeplitz operator T_{u}^{α} induced by any element of $L^{\infty}\left(\mathbb{D}, d A_{\alpha}\right)$ is bounded. Since $L^{\infty}\left(\mathbb{D}, d A_{\alpha}\right)$ is dense in $L^{1}\left(\mathbb{D}, d A_{\alpha}\right)$, for any $u \in L^{1}\left(\mathbb{D}, d A_{\alpha}\right), T_{u}^{\alpha}$ is densely defined on A_{α}^{2} but in general, T_{u}^{α} is not bounded. We note that Berezin transforms and Carleson measures are useful tools in the syudy of Toeplitz operators ([2], [4], [5]). Using those tools, many mathematicians working in the operator theory characterized the boundedness and compactness of Toeplitz operators.

In this paper, we introduce some set $C G$ and prove that Toeplitz operators induced by elements of $C G$ are bounded and $\|u\|_{G}$ having vanishing property implies the compactness of Toeplitz operators T_{u}^{α} and $T_{\bar{u}}^{\alpha}$.

Sections 3 contains some upper bounds of Toeplitz operators induced by elements of $C G$ and relationship between elements of $C G$ and Carleson measures and we deal with the compactness of appropriate products of Toeplitz operators and Hankel operators.

Throughout this paper, we use the symbol $A \preceq B$ for nonnegative constants A and B to indicate that A is dominated by B time some positive constant and p^{\prime} to denote the conjugate of p, that is, $\frac{1}{p}+\frac{1}{p^{\prime}}=1$.

2. Some linear operators

A nice survey of previously known results connecting Toeplitz operators with bounded symbol can be found in [2].

For $z \in \mathbb{D}$, let $\varphi_{z}(w)=\frac{z-w}{1-\bar{z} w}$. Then φ_{z} is an element of $A u t(\mathbb{D})$ which is the set of all bianalytic map of \mathbb{D} onto \mathbb{D}. Moreover, $\varphi_{z} \circ \varphi_{z}$ is the identity map on \mathbb{D} and $A u t(\mathbb{D})$ is the Möbius group under composition.

For $\alpha>-1$ and $z \in \mathbb{D}$, let $U_{z}^{\alpha}: L^{2}\left(\mathbb{D}, d A_{\alpha}\right) \rightarrow L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$ be an isometry operator defined by

$$
U_{z}^{\alpha} f(w)=f \circ \varphi_{z}(w) \frac{\left(1-|z|^{2}\right)^{1+\frac{\alpha}{2}}}{(1-\bar{z} w)^{2+\alpha}}
$$

$f \in L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$ and $w \in \mathbb{D}$.

Since $\left(1-\bar{z} \varphi_{z}(w)\right)^{2+\alpha}=\left(\frac{1-|z|^{2}}{1-\bar{z} w}\right)^{2+\alpha},\left(U_{z}^{\alpha}\right)^{-1}=U_{z}^{\alpha}$ and hence U_{z}^{α} is a self-adjoint unitary operator on A_{α}^{2} and $U_{z}^{\alpha} 1=k_{z}^{\alpha}(w)$.

For a linear operator S on A_{α}^{2}, define S_{z} by $U_{z}^{\alpha} S U_{z}^{\alpha}$. Since U_{z}^{α} is a self-inverse operator, S_{z} is the operator given by conjugation with U_{z}^{α}.

Now we are ready to state useful properties.
Lemma 2.1. For $u \in L^{1}\left(\mathbb{D}, d A_{\alpha}\right)$ and $z \in \mathbb{D},\left(T_{u}^{\alpha}\right)_{z}=T_{u \circ \varphi_{z}}^{\alpha}$.
Proof. Take any f in A_{α}^{2} and any w in \mathbb{D}. Since U_{z}^{α} is self-adjiont,

$$
\begin{aligned}
U_{z}^{\alpha} T_{u}^{\alpha}(f)(w) & =<U_{z}^{\alpha} T_{u}^{\alpha}(f), K_{w}^{\alpha}> \\
& =<U_{z}^{\alpha}(u f), K_{w}^{\alpha}> \\
& =<\left(u \circ \varphi_{z}\right)\left(f \circ \varphi_{z}\right) \frac{\left(1-|z|^{2}\right)^{1+\frac{\alpha}{2}}}{(1-\bar{z} w)^{2+\alpha}}, K_{w}^{\alpha}> \\
& =<T_{u \circ \varphi_{z}}^{\alpha}\left(U_{z}^{\alpha} f\right), K_{w}^{\alpha}> \\
& =T_{u \circ \varphi_{z}}^{\alpha}\left(U_{z}^{\alpha} f\right)(w)
\end{aligned}
$$

Thus $\left(T_{u}^{\alpha}\right)_{z}=T_{u \circ \varphi_{z}}^{\alpha}$.
Corollary 2.2. For $u_{1}, u_{2}, \cdots, u_{n} \in L^{1}\left(\mathbb{D}, d A_{\alpha}\right)$ and $z \in \mathbb{D}$,

$$
U_{z}^{\alpha} T_{u_{1}}^{\alpha} T_{u_{2}}^{\alpha} \cdots T_{u_{n}}^{\alpha} U_{z}^{\alpha}=T_{u_{1} \circ \varphi_{z}}^{\alpha} \cdots T_{u_{n} \circ \varphi_{z}}^{\alpha}
$$

Proof. If follows immediately from the fact that $\left(U_{z}^{\alpha}\right)^{-1}=U_{z}^{\alpha}$ and Lemma 2.1.

Proposition 2.3. For $u \in L^{1}\left(\mathbb{D}, d A_{\alpha}\right)$ and $z \in \mathbb{D}, \widetilde{T_{u \circ \varphi_{z}}^{\alpha}}=\widetilde{T_{u}^{\alpha}} \circ \varphi_{z}$ and hence $\left(\widetilde{T_{u}^{\alpha}}\right)_{z}=\widetilde{T_{u \circ \varphi_{z}}^{\alpha}}=\widetilde{T_{u}^{\alpha}} \circ \varphi_{z}$.

Proof. Take any w in \mathbb{D}. Since $<u \circ \varphi_{z} k_{w}^{\alpha}, k_{w}^{\alpha}>=<u k_{\varphi_{z}(w)}^{\alpha}, k_{\varphi_{z}(w)}^{\alpha}>$,

$$
\begin{aligned}
\widetilde{T_{u \circ \varphi_{z}}^{\alpha}}(w) & =<T_{u \circ \varphi_{z}}^{\alpha} k_{w}^{\alpha}, k_{w}^{\alpha}> \\
& =<u \circ \varphi_{z} k_{w}^{\alpha}, k_{w}^{\alpha}> \\
& =<u k_{\varphi_{z}(w)}^{\alpha}, k_{\varphi_{z}(w)}^{\alpha}> \\
& =<P_{\alpha}\left(u k_{\varphi_{z}(w)}^{\alpha}\right), k_{\varphi_{z}(w)}^{\alpha}> \\
& =\widetilde{T_{u}^{\alpha}}\left(\varphi_{z}(w)\right) \\
& =\widetilde{T_{u}^{\alpha}} \circ \varphi_{z}(w)
\end{aligned}
$$

This completes the proof.
Proposition 2.4. If $S: A_{\alpha}^{2} \rightarrow A_{\alpha}^{2}$ is a bounded linear operator then \widetilde{S} and $S_{z} 1$ are in $L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$.

Proof. Since $\left\|S_{z} 1\right\|_{2, \alpha}=\left\|S U_{z}^{\alpha} 1\right\|_{2, \alpha} \leq\|S\|$ and

$$
\|\widetilde{S}\|_{2, \alpha}=\int_{\mathbb{D}}|\widetilde{S}(z)|^{2} d A_{\alpha}(z) \leq \int_{\mathbb{D}}\|S\|^{2} d A_{\alpha}(z)=\|S\|^{2},
$$

\widetilde{S} and $S_{z} 1$ are in $L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$.
We notice that $P_{\alpha}: L^{2}\left(\mathbb{D}, d A_{\alpha}\right) \rightarrow A_{\alpha}^{2}$ is bounded linear operator and hence for any $u \in L^{\infty}\left(\mathbb{D}, d A_{\alpha}\right),\left\|P_{\alpha}(u f)\right\|_{2, \alpha} \leq\|u\|_{\infty}\|f\|_{2, \alpha}$. Thus T_{u}^{α} is a bounded linear operator. Moreover, we extend the domain of P_{α} to $L^{1}\left(\mathbb{D}, d A_{\alpha}\right)$ and for $f \in A_{\alpha}^{1}$ and $z \in \mathbb{D}, f(z)=\int_{\mathbb{D}} f(w) \overline{K_{z}^{\alpha}(w)} d A_{\alpha}(w)$.

We define $f(z)=\sum_{k=1}^{\infty} k \chi_{\left(\frac{1}{2^{k}}-\frac{1}{2^{k+1}}, \frac{1}{2^{k}}\right)}(|z|)$ for all $z \in \mathbb{D}$. Then f is a radial function and $f \notin L^{\infty}\left(\mathbb{D}, d A_{\alpha}\right)$. Since

$$
\begin{aligned}
\|f\|_{1, \alpha} & =\int_{\mathbb{D}}|f(z)|\left(1-|z|^{2}\right)^{\alpha} d A(z) \\
& \leq\left\{\begin{array}{ll}
\left(1-\frac{1}{4}\right)^{\alpha} \sum_{k=1}^{\infty} \frac{k}{2^{k+1}}, & , \alpha<0 \\
\sum_{k=1}^{\infty} \frac{k}{2^{k+1}} & , \alpha \geq 0
\end{array}, f \in L^{1}\left(\mathbb{D}, d A_{\alpha}\right) .\right.
\end{aligned}
$$

For $p>2$,

$$
\left\|\left(T_{f}^{\alpha}\right)_{z} 1\right\|\left\|_{p, \alpha}=\right\| U_{z}^{\alpha} T_{f}^{\alpha} U_{z}^{\alpha} 1\left\|_{p, \alpha} \leq\right\| f k_{z}^{\alpha} \|_{p, \alpha}<\infty
$$

because $\sup \left\{\left|k_{z}^{\alpha}(w)\right|:|w| \leq \frac{1}{2}\right\} \leq 2^{2+\alpha}$. Since for each $z \in \mathbb{D}$,

$$
\left.\widetilde{|f|}\left|(z)=\int_{\mathbb{D}}\right| k_{z}^{\alpha}(w)\right|^{2}|f(w)| d A_{\alpha}(w) \leq 2^{4+2 \alpha} c \sum_{k=1}^{\infty} \frac{k}{2^{k+1}}
$$

for some constant $c,|f| d A_{\alpha}$ is a Carleson measure and hence T_{f}^{α} is a bounded linear operator. But every element of $L^{1}\left(\mathbb{D}, d A_{\alpha}\right)$ does not imply a bounded Toeplitz operator. Let $C G=\left\{u \in L^{1}\left(\mathbb{D}, d A_{\alpha}\right)\right.$: $\sup _{z}\left\|\left(T_{u}^{\alpha}\right)_{z} 1\right\|_{p, \alpha}<\infty$ and $\sup _{z}\left\|\left(T_{u}^{\alpha *}\right)_{z} 1\right\|_{p, \alpha}<\infty$ for some $\left.p \in(2, \infty)\right\}$. Suppose $f, g \in A_{\alpha}^{2}$. Since $<T_{u}^{\alpha} f, g>=<u f, g>=<f, \bar{u} g>=<$ $f, T_{\bar{u}}^{\alpha} g>,\left(T_{u}^{\alpha}\right)^{*}=T_{\bar{u}}^{\alpha}$. If $\left\|\left(T_{u}\right)_{z} 1\right\|_{p, \alpha}<\infty$ then $\left\|\left(T_{u}^{\alpha *}\right)_{z} 1\right\|_{p, \alpha}=\left\|\left(T_{\bar{u}}^{\alpha}\right)_{z} 1\right\|_{p, \alpha}$ $<\infty$ and clearly $C G$ is closed under the formation of conjugation and hence $\left\{T_{u}^{\alpha}: u \in C G\right\}$ is self-adjoint in $\mathcal{L}\left(A_{\alpha}^{2}\right)$ which is the set of all bounded linear operators on A_{α}^{2}. Moreover, $C G$ is a vector space over \mathbb{C} and we definde $\|u\|_{G}=\max \left\{\sup _{z}\left\|\left(T_{u}^{\alpha}\right)_{z} 1\right\|_{p, \alpha}, \sup _{z}\left\|\left(T_{u}^{\alpha}\right)_{z} 1\right\|_{p, \alpha}\right\}$.

By the above observation, $L^{\infty}\left(\mathbb{D}, d A_{\alpha}\right)$ is a proper subset of $C G$. Since $f(z)=0$ for all $|z|>\frac{1}{2}, \lim _{z \rightarrow \partial \mathbb{D}} \widetilde{T_{f}^{\alpha}}(z)=0=\lim _{z \rightarrow \partial \mathbb{D}}\left\|\left(T_{f}^{\alpha}\right)_{z} 1\right\|_{p, \alpha}$. Since $T_{f}^{\alpha}\left(z^{n}\right) \neq 0$ for all $n \in \mathbb{N}$, T_{f}^{α} has an infinite-dimensional range and hence it is not compact, that is, the vanishing property does not imply the compactness of Toeplitz operators.

3. Some operators

This section contains the boundedness of some operators. We begin by starting well-known lemma (see Lemma 3.10 in [5]) which is some integral estimates.

Lemma 3.1. Suppose $a-1<\alpha$. If $a+b<2+\alpha$ then
$\int_{\mathbb{D}} \frac{d A_{\alpha}(w)}{\left(1-|w|^{2}\right)^{a}|1-\bar{z} w|^{b}}$ is bounded on \mathbb{D}.
Note that $\left(T_{u}^{\alpha}\right)^{*}=T_{\bar{u}}^{\alpha}$. Thus for $z \in \mathbb{D}$,

$$
\left(T_{u}^{\alpha}\right)^{*} K_{w}^{\alpha}(z)=<\left(T_{u}^{\alpha}\right)^{*} K_{w}^{\alpha}, K_{z}^{\alpha}>=<K_{w}^{\alpha}, T_{u}^{\alpha} K_{z}^{\alpha}>=\overline{T_{u}^{\alpha} K_{z}^{\alpha}(w)} .
$$

Moreover, $\left\|\left(T_{u}^{\alpha}\right)_{z} 1\right\|_{t, \alpha}$ in the right side of the next lemma may not be finite but it will be infinite, making the corresponding inequality true.

Lemma 3.2. Suppose $u \in L^{1}\left(\mathbb{D}, d A_{\alpha}\right)$ and $0<a<1$. If $2<\frac{2+\alpha}{a}<t$ then there is a constant c such that

$$
\int_{\mathbb{D}} \frac{\left|\left(T_{u}^{\alpha} K_{z}^{\alpha}\right)(w)\right|}{\left(1-|w|^{2}\right)^{a}} d A_{\alpha}(w) \leq \frac{c| |\left(T_{u}^{\alpha}\right)_{z} 1| |_{t, \alpha}}{\left(1-|z|^{2}\right)^{a}}
$$

for all $z \in \mathbb{D}$ and

$$
\int_{\mathbb{D}} \frac{\left|\left(T_{u}^{\alpha} K_{z}^{\alpha}\right)(w)\right|}{\left(1-|z|^{2}\right)^{a}} d A_{\alpha}(z) \leq \frac{\left.c| |\left(T_{u}^{\alpha}\right)_{w} 1\right|_{t, \alpha}}{\left(1-|w|^{2}\right)^{a}}
$$

for all $w \in \mathbb{D}$.
Proof. Take any z in \mathbb{D}. Since $U_{z}^{\alpha} 1=k_{z}^{\alpha}, T_{u}^{\alpha} K_{z}^{\alpha}=\frac{\left(T_{u}^{\alpha}\right)_{z} 1 \circ \varphi_{z}\left(\varphi_{z}^{\prime}\right)^{1+\frac{\alpha}{2}}}{\left(1-|z|^{2}\right)^{1+\frac{\alpha}{2}}}$ and hence put $w=\varphi_{z}(\lambda)$ to obtain the following :

$$
\begin{aligned}
& \int_{\mathbb{D}} \frac{\left|T_{u}^{\alpha} K_{z}^{\alpha}(w)\right|}{\left(1-|w|^{2}\right)^{a}} d A_{\alpha}(w) \\
& =\int_{\mathbb{D}} \frac{\left|\left(T_{u}^{\alpha}\right)_{z} 1(\lambda)\right|\left|\varphi_{z}^{\prime}\left(\varphi_{z}(\lambda)\right)\right|^{1+\frac{\alpha}{2}}}{\left(1-|z|^{2}\right)^{1+\frac{\alpha}{2}}\left(1-\left|\varphi_{z}(\lambda)\right|^{2}\right)^{a}}\left|\varphi_{z}^{\prime}(\lambda)\right|^{2}\left(1-\left|\varphi_{z}(\lambda)\right|^{2}\right)^{\alpha} d A(\lambda) \\
& =\frac{1}{\left(1-|z|^{2}\right)^{a}} \int_{\mathbb{D}} \frac{\left|\left(T_{u}^{\alpha}\right)_{z} 1(\lambda)\right|}{|1-\bar{z} \lambda|^{2-2 a+\alpha}\left(1-|\lambda|^{2}\right)^{a-\alpha}} d A(\lambda) \\
& \leq \frac{\|\left.\left(T_{u}^{\alpha}\right)_{z} 1\right|_{t, \alpha}}{\left(1-|z|^{2}\right)^{a}}\left(\int_{\mathbb{D}} \frac{d A_{\alpha}(\lambda)}{\left(1-|\lambda|^{2}\right)^{a t^{\prime}}|1-\bar{z} \lambda|^{(2-2 a+\alpha) t^{\prime}}}\right)^{\frac{1}{t^{\prime}}}
\end{aligned}
$$

Here, the inequality comes from Hölder's inequality. If $(2-a+\alpha) t^{\prime}-\alpha<2$ then the final integral is finite. Since $\frac{2+\alpha}{a}<t$, $t^{\prime}<\frac{2+\alpha}{2-a+\alpha}$. This makes the corresponding inequality true. The second inequality follows from the above observation.

Corollary 3.3. Suppose $0<a<1$ and $\|u\|_{G}$ is finite with respect to $\|\cdot\|_{p, \alpha}$ for some $p \in(2, \infty)$, that is, $u \in C G$. If $2<\frac{2+\alpha}{a}<p$ then there is a constant c such that

$$
\int_{\mathbb{D}} \frac{\left|\left(T_{u}^{\alpha} K_{z}^{\alpha}\right)(w)\right|}{\left(1-|w|^{2}\right)^{a}} d A_{\alpha}(w) \leq \frac{c\left\|\left(T_{u}^{\alpha}\right)_{z}\right\|_{p, \alpha}}{\left(1-|z|^{2}\right)^{a}} \preceq \frac{\|u\|_{G}}{\left(1-|z|^{2}\right)^{a}}
$$

for all $z \in \mathbb{D}$ and

$$
\int_{\mathbb{D}} \frac{\left|\left(T_{u}^{\alpha} K_{z}^{\alpha}\right)(w)\right|}{\left(1-|z|^{2}\right)^{a}} d A_{\alpha}(z) \leq \frac{c\left\|\left(T_{u}^{\alpha}\right)_{w}\right\|_{p, \alpha}}{\left(1-|w|^{2}\right)^{a}} \preceq \frac{\|u\|_{G}}{\left(1-|w|^{2}\right)^{a}}
$$

for all $w \in \mathbb{D}$.
Proof. If follows immediately from the definition of $\|u\|_{G}$ and Lemma 3.2.

Proposition 3.4. If $u \in C G$ and $\|u\|_{G}$ is finite with respect to $\|\cdot\|_{t, \alpha}$ then $\left|T_{\bar{u}}^{\alpha}(h)(w)\right| \leq \frac{1}{\left(1-|w|^{2}\right)^{1+\frac{\alpha}{2}}}\|h\|_{2, \alpha}\|u\|_{t, \alpha}$ for every $h \in A_{\alpha}^{2}$ and every $w \in \mathbb{D}$.

Proof. Suppose $h \in A_{\alpha}^{2}$ and $w \in \mathbb{D}$. Then

$$
\left(T_{\bar{u}}^{\alpha} h\right)(w)=<T_{\bar{u}}^{\alpha} h, K_{w}^{\alpha}>=\frac{1}{\left(1-|w|^{2}\right)^{1+\frac{\alpha}{2}}} \times<h, \bar{u} k_{w}^{\alpha}>
$$

By Hölder's inequality, we get $\left|<h, \bar{u} k_{w}^{\alpha}>\right| \leq\|h\|_{t^{\prime}, \alpha}\left\|\bar{u} k_{w}^{\alpha}\right\|_{t, \alpha}$. Since $1<t^{\prime}<2$ and $A_{\alpha}(\mathbb{D})=1$, $\|h\|_{t^{\prime}, \alpha} \leq\|h\|_{t, \alpha}$ and hence one has the result.

Suppose $f \in A_{\alpha}^{2}$ and $z \in \mathbb{D}$. Then

$$
\begin{aligned}
\left(T_{u}^{\alpha} f\right)(z) & =<T_{u}^{\alpha} f, K_{z}^{\alpha}> \\
& =\int_{\mathbb{D}} f(w) \overline{\left(\left(T_{u}^{\alpha}\right)^{*} K_{z}^{\alpha}\right)(w)} d A_{\alpha}(w) \\
& =\int_{\mathbb{D}} f(w) T_{u}^{\alpha} K_{w}^{\alpha}(z) d A_{\alpha}(w)
\end{aligned}
$$

Thus T_{u}^{α} is the integral operator with kernel $T_{u}^{\alpha} K_{w}^{\alpha}(z)$ and hence we find some upper bound of $\left\|T_{u}^{\alpha}\right\|_{p}$ to use the Schur test (see page 126 of [3]), where $\left\|T_{u}^{\alpha}\right\|_{p}$ is the operator norm on A_{α}^{p}.

Theorem 3.5. Suppose $u \in C G$ and $\|u\|_{G}$ is finite with respect to $\|\cdot\|_{p, \alpha}$. If $p p^{\prime}(2+\alpha)<t$ then T_{u}^{α} is a bounded linear operator on A_{α}^{p} and $A_{\alpha}^{p^{\prime}}$ and $\left\|T_{u}^{\alpha}\right\|_{p} \preceq\|u\|_{G}$.

Proof. Since $0<\frac{1}{p p^{\prime}}<1$, let $h(\lambda)=\frac{1}{\left(1-|\lambda|^{2}\right)^{p p^{\prime}}}$. Then h is a positive measurable function. Since $\left\|\left(T_{u}^{\alpha}\right)_{z} 1\right\|_{t, \alpha}$ and $\left\|\left(T_{\bar{u}}^{\alpha}\right)_{z} 1\right\|_{t, \alpha}$ are less than or equal to $\|u\|_{G}$, the results follow from Lemma 3.2 and the Schur test.

Using the concept of a Carleson measure, we get the boundness and compactness of Toeplitz operators.

Proposition 3.6. Suppose $u \in C G$ and $\|u\|_{G}$ is finite with respect to $\|\cdot\|_{t, \alpha}$.
(1) Then $|u| d A_{\alpha}$ is a Carleson measure on A_{α}^{p} and hence T_{u}^{α} is a bounded linear operator.
(2) If $\left\|\left(T_{u}^{\alpha}\right)_{z} 1\right\|_{t, \alpha} \rightarrow 0$ as $z \rightarrow \partial \mathbb{D}$ then T_{u}^{α} is compact.

Proof. (1) For $z \in \mathbb{D},|\widetilde{u}(z)|=\left|<T_{u}^{\alpha} k_{z}^{\alpha}, k_{z}^{\alpha}>\right|$

$$
\begin{aligned}
& =\left(1-|z|^{2}\right)^{1+\frac{\tilde{\alpha}}{2}}\left|<T_{u}^{\alpha} K_{z}^{\alpha}, k_{z}^{\alpha}>\right| \\
& \leq\left(1-|z|^{2}\right)^{1+\frac{\alpha}{2}}\left\|T_{u}^{\alpha} K_{z}^{\alpha}\right\|_{2, \alpha} \\
& =\left(1-|z|^{2}\right)^{1+\frac{\alpha}{2}}\left\|\left(T_{u}^{\alpha}\right)_{z} 1\right\|_{2, \alpha} \\
& \leq\left(1-|z|^{2}\right)^{1+\frac{\alpha}{2}}\left\|\left(T_{u}^{\alpha}\right)_{z} 1\right\|_{t, \alpha},
\end{aligned}
$$

where the last inequality follows from $A_{\alpha}(\mathbb{D})=1$.
Since \widetilde{u} is bounded, $|u| d A_{\alpha}$ is a Carleson measure on A_{α}^{p}.
(2) In the proof of (1), for $z \in \mathbb{D},|\widetilde{u}(z)| \leq\left(1-|z|^{2}\right)^{1+\frac{\alpha}{2}}\left\|\left(T_{u}^{\alpha}\right)_{z} 1\right\|_{t, \alpha}$ and hence $|u| d A_{\alpha}$ is a vanishing Carleson measure. Thus T_{u}^{α} is a compact linear operator.

Corollary 3.7. Suppose $u \in C G$ and $\|u\|_{G}$ is finite with respect to $\|\cdot\|_{p, \alpha}$. If $\|u\|_{G}$ vanishes on $\partial \mathbb{D}$ then T_{u}^{α} and $T_{\bar{u}}^{\alpha}$ are compact opeators.

Proof. It follows immediately from the fact that $\left\|\left(T_{u}^{\alpha}\right)_{z} 1\right\|_{t, \alpha}$ and $\left\|\left(T_{\bar{u}}^{\alpha}\right)_{z} 1\right\|_{t, \alpha}$ are less than or equal to $\|u\|_{G}$.

Proposition 3.8. Suppose $u \in C G$ and $\|u\|_{G}$ is finite with respect to $\|\cdot\|_{t, \alpha}$. If T_{u}^{α} is a compact operator then $\left\|\left(T_{u}^{\alpha}\right)_{z} 1\right\|_{2, \alpha} \rightarrow 0$ as $z \rightarrow \partial \mathbb{D}$ and hence \widetilde{u} has the vanishing property on $\partial \mathbb{D}$. Moreover, $\left\|\left(T_{u}^{\alpha}\right)_{z} 1\right\|_{t, \alpha} \rightarrow$ 0 as $z \rightarrow \partial \mathbb{D}$.

Proof. We note that H^{∞} is dense in A_{α}^{2}. Take any f in A_{α}^{2}. Then $<$ $f, k_{z}^{\alpha}>=\left(1-|z|^{2}\right)^{1+\frac{\alpha}{2}} f(z)$ and hence $k_{z}^{\alpha} \rightarrow 0$ weakly in A_{α}^{2} as $z \rightarrow \partial \mathbb{D}$. Since $\left\|\left(T_{u}^{\alpha}\right)_{z} 1\right\|_{2, \alpha}=\left\|T_{u}^{\alpha} k_{z}^{\alpha}\right\|_{2, \alpha}$ and T_{u}^{α} is compact, $\left\|\left(T_{u}^{\alpha}\right)_{z} 1\right\|_{2, \alpha} \rightarrow 0$ as $z \rightarrow \partial \mathbb{D}$.

For $u \in L^{1}\left(\mathbb{D}, d A_{\alpha}\right)$, we define an operator $H_{u}^{\alpha}: A_{\alpha}^{2} \rightarrow\left(A_{\alpha}^{2}\right)^{\perp}$ by $H_{u}^{\alpha}(g)=\left(I-P_{\alpha}\right)(u g), g \in A_{\alpha}^{2}$. Then H_{u}^{α} is called the Hankel operator on the weighted Bergman space with symbol u. Since $L^{\infty}\left(\mathbb{D}, d A_{\alpha}\right)$ is dense in $L^{1}\left(\mathbb{D}, d A_{\alpha}\right), H_{u}^{\alpha}$ is densely defined and if $u \in$ $L^{\infty}\left(\mathbb{D}, d A_{\alpha}\right)$ then $\left\|H_{u}^{\alpha}\right\| \leq\|u\|_{\infty}$ and hence H_{u}^{α} is bounded. By Lemma 2.1, $\left(T_{u}^{\alpha}\right)_{z}=T_{u o \varphi_{z}}^{\alpha}$ and hence $\left\|\left(H_{u}^{\alpha}\right)_{z} 1\right\|_{2, \alpha}=\left\|H_{u}^{\alpha} k_{z}^{\alpha}\right\|_{2, \alpha} \leq\left\|H_{u}^{\alpha}\right\|$ and $\left(H_{u}^{\alpha}\right)_{z}=\left(I-T_{u}^{\alpha}\right)_{z}=I-T_{u \circ \varphi_{z}}^{\alpha}=H_{u \circ \varphi_{z}}^{\alpha}$. Thus one has the following properties :

Proposition 3.9. Suppose $u_{1}, u_{2} \in L^{1}\left(\mathbb{D}, d A_{\alpha}\right)$ and $u_{1}=u_{2} \circ \varphi_{z}$ for some $z \in \mathbb{D}$. Then the following pairs are unitary equivalent :
(1) $T_{u_{1}}^{\alpha}$ and $T_{u_{2}}^{\alpha}$
(2) $H_{u_{1}}^{\alpha}$ and $H_{u_{2}}^{\alpha}$.

Proposition 3.10. Suppose H_{u}^{α} is bounded, where $u \in L^{1}\left(\mathbb{D}, d A_{\alpha}\right)$. Then $\left(H_{u}^{\alpha}\right)_{z} 1$ and $H_{u}^{\alpha} k_{z}^{\alpha}$ are in $L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$ and $H_{u \circ \varphi_{z}}^{\alpha}$ is bounded.

Proof. By the above observation, $\left(H_{u}^{\alpha}\right)_{z} 1$ and $H_{u}^{\alpha} k_{z}^{\alpha}$ are in $L^{2}\left(\mathbb{D}, d A_{\alpha}\right)$. Take any f in A_{α}^{2}. Since $\left(H_{u}^{\alpha}\right)_{z}=H_{u \circ \varphi_{z}}^{\alpha},\left\|H_{u \varphi_{z}}^{\alpha}(f)\right\|_{2, \alpha}=\left\|\left(H_{u}^{\alpha}\right)_{z} f\right\|_{2, \alpha}$ $=\left\|H_{u}^{\alpha} U_{z}^{\alpha}(f)\right\|_{2, \alpha} \leq\left\|H_{u}^{\alpha}\left|\|| | f\|_{2, \alpha}\right.\right.$. This completes the proof.

Proposition 3.11. If $u^{2} \in C G$ then H_{u}^{α} is bounded and hence we get the results of Proposition 3.10.

Proof. Take any f in A_{α}^{2}. By Proposition 3.6, $|u|^{2} d A_{\alpha}$ is a Carleson measure on A_{α}^{2} and hence there is a constant c such that

$$
\int_{\mathbb{D}}|f(z)|^{2}|u(z)|^{2} d A_{\alpha}(z) \leq c\|f\|_{2, \alpha}^{2} .
$$

Then $\left\|H_{u}^{\alpha}(f)\right\|_{2, \alpha}^{2}=\left\|\left(I-P_{\alpha}\right)(u f)\right\|_{2, \alpha}^{2} \leq\|u f\|_{2, \alpha}^{2} \leq c\|f\|_{2, \alpha}^{2}$. Thus H_{u}^{α} is bounded.

Consider some products of Toeplitz operators and Hankel operators. Suppos $u, v \in L^{1}\left(\mathbb{D}, d A_{\alpha}\right)$ and $f, g \in A_{\alpha}^{2}$. Since $<v f, P_{\alpha}(u g)>$ $=<P_{\alpha}(v f), P_{\alpha}(u g)>$ and $<\bar{u} T_{v}^{\alpha}(f), g>=<T_{\bar{u}}^{\alpha} T_{v}^{\alpha}(f), g>,<$ $\left(H_{u}^{\alpha}\right)^{*} H_{v}^{\alpha}(f), g>=<\bar{u} v f, g>-<T_{v}^{\alpha}(f), u g>-<v f, P_{\alpha}(u g)>$ $+<T_{\bar{u}}^{\alpha} T_{v}^{\alpha}(f), g>=<\left(T_{\bar{u} v}^{\alpha}-T_{\bar{u}}^{\alpha} T_{v}^{\alpha}\right)(f), g>$ and hence $\left(H_{u}^{\alpha}\right)^{*} H_{v}^{\alpha}=$ $T_{\bar{u} v}^{\alpha}-T_{\bar{u}}^{\alpha} T_{v}^{\alpha}$. In particular, if $u=v$ then $\left(H_{u}^{\alpha}\right)^{*} H_{u}^{\alpha}=T_{|u|^{2}}^{\alpha}-T_{\bar{u}}^{\alpha} T_{u}^{\alpha}$. If H_{u}^{α} is compact then $\left(H_{u}^{\alpha}\right)^{*} H_{u}^{\alpha}$ is compact. Proposition 3.8 implies that $\left(\left(H_{u}^{\alpha}\right)^{*} H_{u}^{\alpha}\right)^{\sim}(z) \rightarrow 0$ as $z \rightarrow \partial \mathbb{D}$ and hence $\left\|H_{u} k_{z}^{\alpha}\right\|_{2, \alpha} \rightarrow 0$ as $z \rightarrow \partial \mathbb{D}$ because $\left\|H_{u}^{\alpha} k_{z}^{\alpha}\right\|_{2, \alpha}^{2}=<H_{u}^{\alpha} k_{z}^{\alpha}, H_{u}^{\alpha} k_{z}^{\alpha}>=\left(\left(H_{u}^{\alpha}\right)^{*} H_{u}^{\alpha}\right)^{\sim}(z)$.
Suppose u, v, u^{2}, v^{2} are in $C G$ and T_{u}^{α} and H_{u}^{α} are compact. Then $\left(T_{u}^{\alpha}\right)^{*}$ and $\left(H_{u}^{\alpha}\right)^{*}$ are also compact. Since U_{z}^{α} is a bounded linear operator and $\left(T_{u}^{\alpha}\right)_{z}=U_{z}^{\alpha} T_{u}^{\alpha} U_{z}^{\alpha}$, the above equality implies that the following are compact :
(1) $T_{u}^{\alpha} T_{v}^{\alpha}$
(2) $T_{u}^{\alpha} T_{\bar{v}}^{\alpha}$
(3) $T_{\bar{u}}^{\alpha} T_{u}^{\alpha}$
(4) $\left(H_{u}^{\alpha}\right)^{*} H_{v}^{\alpha}$
(5) $H_{u}^{\alpha}\left(H_{v}^{\alpha}\right)^{*}$
(6) $T_{\bar{u} v}^{\alpha}$
(7) $T_{u \bar{v}}^{\alpha}$
(8) $T_{|u|^{2}}^{\alpha}$
(9) $H_{u}^{\alpha} T_{u}^{\alpha}$
(10) $H_{u}^{\alpha} T_{\bar{u}}^{\alpha}$
(11) $H_{v}^{\alpha} T_{u}^{\alpha}$
(12) $T_{u \circ \varphi_{z}}^{\alpha} T_{v \circ \varphi_{z}}^{\alpha}$
(13) $T_{u \circ \varphi_{z}}^{\alpha} T_{v \circ \varphi_{z}}^{\alpha}$
(14) $H_{u \circ \varphi_{z}}^{\alpha}\left(H_{v}^{\alpha}\right)^{*}$
(15) $\left(H_{u}^{\alpha}\right)^{*} H_{v \circ \varphi_{z}}^{\alpha}$.

References

[1] S. Axler, The Bergman Space the Bloch space and commutators of multiplication operators, Duke Math. J. 53 (1986), no. 2, 315-332.
[2] S. Axler and D. Zheng, Compact operators via the Berezin transform, Indiana Univ. Math. 47 (1998), 387-399.
[3] A. Brown, P. R. Halmos, and A. L. Shields, Cesàro operators, Acta Sci. Math. (Szeged) 26 (1965), 125-137.
[4] K. Stroethoff, Compact Toeplitz operators on the Bergman space, Math. Proc. Cambridge Philos. Soc. 124 (1998), no. 1, 151-160.
[5] K. Zhu, Operator theory in function spaces, Marcell-Dekker, Inc., New york, 1990.
*
Department of Mathematics
Sookmyung Women's University
Seoul 140-742, Republic of Korea
E-mail: shkang@sookmyung.ac.kr

[^0]: Received March 08, 2013; Accepted July 08, 2013.
 2010 Mathematics Subject Classification: Primary 47A15, 47B35.
 Key words and phrases: weighted Bergman spaces, Toeplitz operators, Berezin transforms, integral operators.

 This research was partially supported by Sookmyung Women's University Research Grants 2013.

