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Abstract 
 
We construct the fundamental fields for 3-D arbitrarily shaped plane cracks in by differentiating with respect to 

a parameter of the crack. As an application of these fundamental fields, the total elastic energy release rate in 
combined mode cracking is computed. 
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1. Introduction  

Bueckner (1970) introduced weight functions to de-
termine the stress intensity factors in cracked bodies. 
These weight functions are displacements fields with 
a suitable singularity at the crack tip for the given 
crack configuration and body geometry. The dis-
placement field produces stresses that are in equilibri-
um with the zero body forces and zero tractions on 
the surface of the body. The fields of the weight func-
tions and corresponding strains and stresses are re-
ferred to as fundamental fields. Rice (1972) noted that 
when the dependence of the stress intensity factor and 
the displacements on the crack tip position are known 
under symmetric loading, the mode I weight function 
can be obtained by differentiating the displacements 
with respect to the crack position. Montenegro et al. 
(2006, 2008) used the weight function method to 
calculate the mode I stress intensity factor in embed-
ded and surface irregular cracks and for a partially 
closed three-dimensional plane crack. In this paper, 

, we compute the fundamen-
tal field for a plane crack by partially differentiating 
with respect to a parameter of the plane crack. As an 

application of this fundamental field, the total energy 
release rate in combined mode cracking is obtained. 

2. Regular Fields 

A rectangular Cartesian coordinate system with 
axes x , y , z  and a system of cylindrical coordi-
nates r , , z  will be used. We assume that 

cosx r o  and siny r o , with o  
denoting some fixed angle. An elastic body V  
with a plane crack C  in the plane 0z  will be 
considered. C  and C  refer to the crack faces 
in the upper and lower z half spaces, respective-
ly. C  shall be chosen from a 1 parametric fami-
ly of cracks C p , defined by  

 

, 1 1r a pb p  (1) 

 

where a  and b  are two smooth func-
tions of  with period 2 ;  a pb  shall be 
positive for all  and p  and such that  

 
r a pb   (2) 

*Corresponding author. Tel.: +82-51-2326, Fax.: +82-51--582-9164, 
E-mail address: dman@pusan.ac.kr 
Copyright © KSOE 2013. 



132  Deukman An / International Journal of Ocean System Engineering 3(3) (2013) 131-135 
 

 

defines a simple contour p , the edge of C p . 

The intersection of V  with the plane 0z  is 
assumed to be large enough to accommodate the 
whole family (1). If C C p , we let S p  
denotes the boundary of V  with the faces of C  
included. Let V V  and S S p  be portions 

of the elastic body and its boundary, respectively; 
these portions are to be the same for all p . In V , 
we assume a distribution of body forces F  and on 
S  a distribution of tractions T . Both F  and T  
shall be independent of p ; the combined loading 
system F , T  is to be self-equilibrated. We set 

 
d a pb r  (3) 

 

This assigns to every point ,r  of C  a dis-

tance d  from p . The generally accepted as-
ymptotics of u , v , w can be written as 

 
1

2
1, ,ou u p p d u   

1
2

1, ,ov v p p d v   (4) 
1

2
1, ,ow w p p d w  

 

for the points of C . We postulate here 
that ou , ov , ow ; , , are smooth functions of 

, p , and that 1u , 1v , 1w have the order 1
2o d  as 

0d .  

3. Fundamental Fields 

A cracked body responds with a field of displace-
ments, strains, and stresses. Let p  denote this 
field; it depends on p  through the choice 

C C p  of the crack. The differentiation of all 
the field quantities with respect to p yields a 

field * p . Here, we assume a fixed load on the 

boundary and in the body with fixed functions. 
Differentiation with respect to parameter p  leads 
to a field with vanishing boundary tractions and 
body forces. It has neither body forces nor bounda-
ry tractions. It is an ordinary fundamental with cer-
tain geometric intensity coefficients * ,m pi , 

which we shall link to the stress intensity factors 
,K pi  of p . This can be done by comparing 

the Cartesian displacements u , v , w of p  with 

the displacements *u u p , *v v p , and 
*w w p  of * p  within C . If we differ-

entiate equation (4) with respect to p , then 
 

1 1
2 2*2 ,u b p d o d    

1 1
2 2*2 ,v b p d o d  (5) 

1 1
2 2*2 ,w b p d o d    

 
There is no essential loss of generality to consider 

the approach to p  from within C  for 0p . 
To this end, we pick a point p  of angle  on 

0  and let a point Q  approach P  along the 

inner normal to 0  through P (Fig. 1). We 
denote the distance from Q  to P  by h  and 
observe that

OPQ

0

0C

O

Q
P

d

h
OPQ

0

0C

O

Q
P

d

h

      

cospb

pb

p
0

cospb

pb

p
0

 
Fig. 1 Definitions of geometric variables in plane crack  Fig. 2 Geometric meaning of cosb  
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coslim
h
dQ p

  (6) 

 
where  is the angle OPQ . We add here that 
 

cos da
ds

 (7) 

 

at any generic point  on 0 ; ds  is the arc 

element on the edge. Turning now to iK  and *mi , 

we assume for simplicity that the tangent to 0  

through P  runs parallel to the y axis. In this 
case, 
 

1
2

0,0 lim
2 1IK w w h  

1
2

0,0 lim
2 1IIK u u h  

1
2

0,0 lim
2IIIK v v h  

 (8) 
and furthermore 
 

1/2,0 limIm w h  
1/2,0 limIIm u h   (9) 

1/2,0 limIIIm v h  

 
Now, the first relations (8) and (6) imply 
 

1/2,0
,0 cos

2 1IK  

 
while the first relations (9) and (6) lead to  
 

1/2,0 1/ 2 ,0 cosIm b . 

 
Hence,  

 
1,0 ,0 cos

2I Im K b  

  (10) 
In similar vein, 

 
1,0 ,0 cos

2II IIm K b  (11) 

 
1,0 ,0 cos
2III IIIm K b  (12) 

 
Relations (10) (12) have been derived for the case 

where the tangent to 0  at p  has the direction 

of the y-axis. However, this simplifying condition 
can always be established for any given p on 

0  by a suitable choice for angle 0 , which 

appears in the relations between the Cartesian coor-
dinates x , y  and the cylindrical ones r , . 
Therefore, relations (10) (12) are valid for any p  

on 0 . The product cosb  admits a simple 

geometric interpretation (Fig. 2). For small p , the 

quantity cospb  represents the distance from 

p on 0  to the nearest point on p . 

Before we turn to an application, we consider a 
second family of cracks, c p , 

 

r a p b   (13) 

 

where 0 0c c . In analogy to the fields p , 

we define a second family p caused by ap-

plying a fixed load system F , T  to fixed regions 
V , S . Here "fixed" indicates the independence 
of p . Differentiation with respect to p  yields 
ordinary fundamental fields, and our results for the 
first family apply to the second family as well. 
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4. Application 

Let us now take V  with the crack 0C  (the 
same for both families) and remove from V  all 
those points whose distance from 0  is less 
than , where 0  is given. For sufficiently 
small , the removed material is inside a torus 
surrounding 0 ; we apply the reciprocity theorem 

to the two fields p  and p  in the re-

duced elastic body. Thereafter, we let 0 . The 
result is an energy balance of the form (Bueckner 
(1973)) 
 

 0

2

( , ) ( , )

I I II II III III

S V

K m K m K m ds

w T ds w F dv
 (14) 

 
where the left hand side represents the contribution 
of the toroidal surface in the limit 0 . w  is 
the displacement vector of 0 , and the bar dis-

tinguishes the quantities of the second family. The 
results for (10) (12) make it possible to rewrite the 
left hand side in terms of iK , iK  so that 

 
1 1 cos

( , ) ( , )

I I II II III III

S V

K K K K K K b ds

w T ds w F dv
   

 (15) 
In the same vein, the reciprocity theorem can be 

applied to 0  and 0 . The result is 

 
1 1 cos

( , ) ( , )

I I II II III III

S V

K K K K K K b ds

w T ds w F dv
   

 (15`) 
Proceeding with (15), we choose a special sys-

tem F , T  for illustration. To this end, we take 
two points 1Q , 2Q  of V  and denote the unit vec-
tor pointing from 1Q  in the direction of 2Q  by n . 
At 1Q , we apply a unit force in direction n ; and 

apply a unit force in direction n  at 2Q . No other 
forces or tractions shall act. Hence, 

 

1 2

1 1 cos

,

I I II II III IIIK K K K K K b ds

w Q w Q n
 

  (16) 
This is a particular case of (16): 1Q , 2Q  are op-

posite points on the crack faces, and n  is normal 
to C . 

One can multiply both sides of (15) by p  and 
rewrite the balance with the aid of the denotations 

 
cospb a , pw w  (17) 

 
For positive p  and b , we can interpret C p  

to be an extension of 0C  and ads  as a local 

gain in area; w  is the change in 0w  caused 

by the extension. The new form of (15), namely 
 
1 1

( , ) ( , )

I I II II III III

S V

K K K K K K ads

w T ds w F dv
 

  (18) 
can be interpreted as an exchange of energies that 
accompanies the extension. If, in particular, the two 
families are identical, so that i iK K , T T , 

and F F , then the right hand side of (18) repre-
sents the work of the externally impressed forces 
F , T  in the process of crack extension under a 
constant load. The left hand side of (18) is equal to 
twice the energy released (Broek (1982)). 

Formulas (10) (12) are valid beyond the assump-
tions on S  and T . It suffices to have T  defined 
on the union of all S p  and to use the restriction 

of T  on S p  as traction in the case 

of C C p . 

5. Conclusion 

In this paper, by differentiating with respect to 
crack geometric parameter p , we obtained the 
weight function for a plane crack in a 3-D linear 
elastic body. Differentiation gave a field with van-
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ishing boundary tractions and body forces. As an 
application of this fundamental field, the total ener-
gy release rate was obtained in combined mode 
cracking for a plane 3-D crack. 
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