DOI QR코드

DOI QR Code

Pressure Dependence of Acoustic Properties of Liquid Ethanol by using High-pressure Brillouin Spectroscopy

  • 투고 : 2013.07.09
  • 심사 : 2013.08.27
  • 발행 : 2013.10.25

초록

Brillouin spectroscopy has been widely used for the investigation of acoustic properties of condensed matters in the hypersonic region. A high-pressure Brillouin spectrometer was set up by combining a diamond anvil cell and a tandem multi-pass Fabry-Perot interferometer. It was successfully applied to liquid ethanol, and the pressure dependence of the sound velocity, the refractive index and other acoustic properties were derived based on the measurements. The detailed optical setup and experimental procedure are described.

키워드

참고문헌

  1. W. Hayes and R. Loudon, Scattering of Light by Crystals (Wiley, New York, USA, 1978), Chapter 7.
  2. L. Brillouin, "Diffusion de la lumiere et des rayons X par un corps transparent homogene: Influence de l'agitation thermique," Ann. Physique 17, 88-122 (1922).
  3. E. Gross, "Change of wavelength of light due to elastic heat waves at scattering in liquids," Nature 126, 201-202 (1930). https://doi.org/10.1038/126201a0
  4. H. Z. Cummins and R. W. Gammon, "Rayleigh and Brillouin scattering in liquids-Landau-Placzek ratio," J. Chem. Phys. 44, 2785-2796 (1966). https://doi.org/10.1063/1.1727126
  5. J. R. Sandercock, "Some recent developments in Brillouin scattering," RCA Rev. 36, 89-107 (1975).
  6. J. R. Sandercock, Light Scattering in Solids III, M. Cardona and G. Gutherodt eds. (Springer, Berlin, 1982), p. 173.
  7. Y. Takagi and K. Kurihara, "Application of a microscope to Brillouin scattering spectroscopy," Rev. Sci. Instrum. 63, 5552-5555 (1992). https://doi.org/10.1063/1.1143380
  8. M. Ahart, T. Yagi, and Y. Takagi, "Microscopic Brillouin scattering study in $TeO_{2}$-pressure dependence of acoustic modes," Jpn. J. Appl. Phys. 35, 2882-2888 (1996). https://doi.org/10.1143/JJAP.35.2882
  9. F. M. Jiang and S. Kojima, "Microheterogeneity and relaxation in $0.65Pb(Mg_{1/3}Nb_{2/3})O_{3}-0.35PbTiO_{3}$ relaxor single crystals," Appl. Phys. Lett. 77, 1271-1273 (2000). https://doi.org/10.1063/1.1289909
  10. Y. Li, H. S. Lim, S. C. Ng, Z. K. Wang, M. H. Kuok, E. Vekris, V. Kitaev, F. C. Peiris, and G. A. Ozin, "Micro-Brillouin scattering from a single isolated nanosphere," Appl. Phys. Lett. 88, 023112 (2006). https://doi.org/10.1063/1.2164924
  11. S. Itoh, T. Yamana, and S. Kojima, "Quick measurement of Brillouin spectra of glass-forming material Trimethylene Glycol by angular dispersion-type Fabry-Perot interferometer system," Jpn. J. Appl. Phys. 35, 2879-2881 (1996). https://doi.org/10.1143/JJAP.35.2879
  12. J.-H. Ko and S. Kojima, "Nonscanning Brillouin spectroscopy applied to solid materials," Rev. Sci. Instrum. 73, 4390-4392 (2002). https://doi.org/10.1063/1.1516847
  13. J.-H. Ko and S. Kojima, "Angular dispersion-type nonscanning Fabry-Perot interferometer applied to ethanol-water mixture," J. Opt. Soc. Korea 13, 261-266 (2009). https://doi.org/10.3807/JOSK.2009.13.2.261
  14. H. Z. Cummins and P. E. Schoen, Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois eds. (North-Holland, Amsterdam, 1972), pp. 1029-1075.
  15. R. Vacher and L. Boyer, "Brillouin scattering: A tool for the measurement of elastic and photoelastic constants," Phys. Rev. B 6, 639-673 (1972). https://doi.org/10.1103/PhysRevB.6.639
  16. S. Kojima, "Gigahertz acoustic spectroscopy by micro-Brillouin scattering," Jpn. J. Appl. Phys. 49, 07HA01 (2010).
  17. L. Comez, C. Masciovecchio, G. Monaco, and D. Fioretto, "Progress in liquid and glass physics by Brillouin scattering spectroscopy," Solid State Phys. 63, 1-77 (2012).
  18. H. Z. Cummins, "Brillouin scattering spectroscopy of ferroelectric and ferroelastic phase transitions," Phil. Trans. R. Soc. Lond. A 293, 393-405 (1979). https://doi.org/10.1098/rsta.1979.0106
  19. H. Z. Cummins and A. P. Levanyuk, Light Scattering Near Phase Transitions (Elsevier Science, Oxford, 1983).
  20. C. H. Whitfield, E. M. Brody, and W. A. Bassett, "Elastic moduli of NaCl by Brillouin scattering at high pressure in a diamond anvil cell," Rev. Sci. Instrum. 47, 942-947 (1976). https://doi.org/10.1063/1.1134778
  21. H. Shimizu, E. M. Brody, H. K. Mao, and P. M. Bell, "Brillouin measurements of solid n-H2 and n-D2 to 200 kbar at room temperature," Phys. Rev. Lett. 47, 128-131 (1981). https://doi.org/10.1103/PhysRevLett.47.128
  22. M. Grimsditch, R. Bhadra, and Y. Meng, "Brillouin scattering from amorphous materials at high pressure," Phys. Rev. B 38, 7836-7838 (1988). https://doi.org/10.1103/PhysRevB.38.7836
  23. C.-S. Zha, T. S. Duffy, H.-K. Mao, and R. J. Hemley, "Elasticity of hydrogen to 24 GPa from single-crystal Brillouin scattering and synchrotron x-ray diffraction," Phys. Rev. B 48, 9246-9255 (1993). https://doi.org/10.1103/PhysRevB.48.9246
  24. T. S. Duffy, W. L. Vos, C.-S. Zha, R. J. Hemley, and H.-K. Mao, "Sound velocities in dense hydrogen and the interior of Jupiter," Science 263, 1590-1593 (1994). https://doi.org/10.1126/science.263.5153.1590
  25. C.-S. Zha, R. J. Hemley, H.-K. Mao, T. S. Duffy, and C. Meade, "Acoustic velocities and refractive index of $SiO_{2}$ glass to 57.5 GPa by Brillouin scattering," Phys. Rev. B 50, 13105-13112 (1994). https://doi.org/10.1103/PhysRevB.50.13105
  26. A. Polian, "Brillouin scattering at high pressure: An overview," J. Raman Spectrosc. 34, 633-637 (2003). https://doi.org/10.1002/jrs.1031
  27. M. Ahart, J. L. Yarger, K. M. Lantzky, S. Nakano, H.-K. Mao, and R. J. Hemley, "High-pressure Brillouin scattering of amorphous $BeH_{2}$," J. Chem. Phys. 124, 014502 (2006). https://doi.org/10.1063/1.2138692
  28. L. L. Stevens, E. B. Orler, D. M. Dattelbaum, M. Ahart, and R. J. Hemley, "Brillouin-scattering determination of the acoustic properties and their pressure dependence for three polymeric elastomers," J. Chem. Phys. 127, 104906 (2007). https://doi.org/10.1063/1.2757173
  29. A. S. Benjamin, M. Ahart, S. A. Gramsch, L. L. Stevens, E. B. Orler, D. M. Dattelbaum, and R. J. Hemley, "Acoustic properties of Kel F-800 copolymer up to 85 GPa," J. Chem. Phys. 137, 014514 (2012). https://doi.org/10.1063/1.4731706
  30. J. H. Kim, J.-Y. Choi, M.-S. Jeong, J.-H. Ko, M. Ahart, Y. H. Ko, and K. J. Kim, "Development of a high-pressure Brillouin spectrometer and its application to an ethylene-vinyl acetate copolymer," J. Korean Phys. Soc. 60, 1419-1423 (2012). https://doi.org/10.3938/jkps.60.1419
  31. M.-S. Jeong, J. H. Kim, J.-H. Ko, Y. H. Ko, and K. J. Kim, "Pressure dependence of acoustic behaviors and refractive index of amorphous Kel F-800 copolymer studied by Brillouin spectroscopy," Curr. Appl. Phys. 13, 1774-1777 (2013). https://doi.org/10.1016/j.cap.2013.07.003
  32. J. M. Brown, L. J. Slutsky, K. A. Nelson, and L.-T. Cheng, "Velocity of sound and equations of state for methanol and ethanol in a diamond-anvil cell," Science 241, 65-67 (1988). https://doi.org/10.1126/science.241.4861.65
  33. M. Ahart, F. Jiang, and S. Kojima, "Brillouin scattering of pressure-induced glass transition in ethanol and methanol," Jpn. J. Appl. Phys. 37, 1052-1053 (1998). https://doi.org/10.1143/JJAP.37.L1052
  34. M. I. Eremets, High Pressure Experimental Methods (Oxford University Press, Oxford, 1996), Chapter 12.
  35. T. H. Kim, J.-H. Ko, E. M. Kwon, and J.-G. Jun, "Micro- Brillouin spectroscopy applied to the glass transition of anti-inflammatory egonol," J. Opt. Soc. Korea 14, 403-408 (2010). https://doi.org/10.3807/JOSK.2010.14.4.403
  36. J.-H. Ko and S. Kojima, "Brillouin scattering study on glass-forming ethanol," J. Non-cryst. Solids 307-310, 154-160 (2002) https://doi.org/10.1016/S0022-3093(02)01454-0
  37. R. Jia, F. Li, M. Li, Q. Cui, Z. He, L. Wang, Q. Zhou, T. Cui, G. Zou, Y. Bi, S. Hong, and F. Jing, "Brillouin scattering studies of liquid argon at high temperatures and high pressures," J. Chem. Phys. 129, 154503 (2008). https://doi.org/10.1063/1.2993256
  38. F. Li, M. Li, Q. Cui, T. Cui. Z. He, Q. Zhou, and G. Zou, "The velocity, refractive index, and equation of state of liquid ammonia at high temperatures and high pressures," J. Chem. Phys. 131, 134502 (2009). https://doi.org/10.1063/1.3223549

피인용 문헌

  1. Elastic properties of lead-free (Na1/2Bi1/2)TiO3-BaTiO3 single crystals near the morphotropic phase boundary as studied by using Brillouin spectroscopy vol.66, pp.9, 2015, https://doi.org/10.3938/jkps.66.1350
  2. Temperature and molecular-weight dependences of acoustic behaviors of polystyrene studied using Brillouin spectroscopy vol.70, pp.8, 2017, https://doi.org/10.3938/jkps.70.791
  3. Pressure and molecular-weight dependences of elastic properties of polystyrene polymers studied by Brillouin spectroscopy vol.17, pp.11, 2017, https://doi.org/10.1016/j.cap.2017.08.003
  4. High-pressure elasticity of poly(methyl methacrylate) up to 31.5 GPa studied by Brillouin spectroscopy vol.15, pp.8, 2015, https://doi.org/10.1016/j.cap.2015.05.004
  5. Acoustic and relaxation behaviors of polydimethylsiloxane studied by using brillouin and dielectric spectroscopies vol.68, pp.7, 2016, https://doi.org/10.3938/jkps.68.896
  6. Acoustic anisotropy of oriented polyethylene terephthalate films studied through Brillouin light scattering vol.15, pp.4, 2014, https://doi.org/10.1080/15980316.2014.971888
  7. Acoustic Anomalies and Fast Relaxation Dynamics of Amorphous Progesterone as Revealed by Brillouin Light Scattering vol.10, pp.12, 2017, https://doi.org/10.3390/ma10121426
  8. Effects of oxygen deficiency on the acoustic anomalies and phase transition behaviors of barium titanate single crystals vol.18, pp.1, 2018, https://doi.org/10.1016/j.cap.2017.10.014
  9. Temperature and pressure dependences of acoustic anomalies of PET films studied by using Brillouin spectroscopy vol.66, pp.7, 2015, https://doi.org/10.3938/jkps.66.1120
  10. Anomalies in the sound velocities of [011]-oriented Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals studied by using Brillouin light scattering vol.68, pp.12, 2016, https://doi.org/10.3938/jkps.68.1424
  11. Boson peak dynamics of glassy glucose studied by integrated terahertz-band spectroscopy vol.94, pp.22, 2016, https://doi.org/10.1103/PhysRevB.94.224204
  12. Pressure dependence of acoustic anomalies of polydimethylsiloxane studied by Brillouin spectroscopy vol.466-467, 2015, https://doi.org/10.1016/j.physb.2015.03.025
  13. Elastic anomalies associated with the antiferroelectric phase transitions of PbHfO3 single crystals vol.64, pp.8, 2014, https://doi.org/10.3938/jkps.64.1169
  14. High-pressure acoustic properties of glycerol studied by Brillouin spectroscopy vol.478, 2015, https://doi.org/10.1016/j.physb.2015.08.040
  15. Monitoring of Film Qualities of Amorphous SiO2 films/Si(100) Substrates by Measuring Bulk and Surface Acoustic Waves in Terms of Brillouin Spectroscopy vol.73, pp.7, 2018, https://doi.org/10.3938/jkps.73.960
  16. Acoustic Anomalies and Phase Transition Behaviors of Lead-Free Piezoelectric (Na1/2Bi1/2)TiO3-xBaTiO3 Single Crystals as Revealed by Brillouin Light Scattering vol.11, pp.6, 2018, https://doi.org/10.3390/ma11061000
  17. Glass Transition Process of Amorphous Quinidine Studied by Using Brillouin Light Scattering vol.72, pp.4, 2018, https://doi.org/10.3938/jkps.72.522
  18. single crystal vol.52, pp.11, 2019, https://doi.org/10.1088/1361-6463/aafc0c