DOI QR코드

DOI QR Code

Regioselective Synthesis of 1,3,4,5-Tetrasubstituted Pyrazoles from α-Alkenyl-α,β-Enones Derived from Morita-Baylis-Hillman Adducts

  • Kim, Sung Hwan (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Lim, Jin Woo (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Yu, Jin (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Jae Nyoung (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Received : 2013.06.27
  • Accepted : 2013.07.08
  • Published : 2013.10.20

Abstract

Convenient synthetic method for 4-arylethylpyrazoles and 4-styrylpyrazoles was developed using ${\alpha}$-alkenyl-${\alpha},{\beta}$-enones readily accessed from the Morita-Baylis-Hillman reaction. For the synthesis of 4-arylethylpyrazole, the reactions with arylhydrazines needed to be carried out in o-dichlorobenzene under $N_2$ balloon atmosphere. On the other hand, 4-styrylpyrazoles required the reactions in ethanol under $O_2$ balloon atmosphere.

Keywords

References

  1. Dadiboyena, S.; Nefzi, A. Eur. J. Med. Chem. 2011, 46, 5258-5275 https://doi.org/10.1016/j.ejmech.2011.09.016
  2. Huang, Y. R.; Katzenellenbogen, J. A. Org. Lett. 2000, 2, 2833-2836. https://doi.org/10.1021/ol0062650
  3. Lamberth, C. Heterocycles 2007, 71, 1467-1502. https://doi.org/10.3987/REV-07-613
  4. Jiang, J.-A.; Du, C.-Y.; Gu, C.-H.; Ji, Y.-F. Synlett 2012, 23, 2965-2968. https://doi.org/10.1055/s-0032-1317668
  5. Polshettiwar, V.; Varma, R. S. Tetrahedron Lett. 2008, 49, 397-400. https://doi.org/10.1016/j.tetlet.2007.11.017
  6. Polshettiwar, V.; Varma, R. S. Tetrahedron 2010, 66, 1091-1097. https://doi.org/10.1016/j.tet.2009.11.015
  7. Devery, J. J., III; Mohanta, P. K.; Casey, B. M.; Flowers, R. A., II Synlett 2009, 1490-1494.
  8. Wang, Z.-X.; Qin, H.-L. Green Chem. 2004, 6, 90-92. https://doi.org/10.1039/b312833d
  9. Katrizky, A. R.; Wang, M.; Zhang, S.; Voronkov, M.; Steel, P. J. J. Org. Chem. 2001, 66, 6787-6791. https://doi.org/10.1021/jo0101407
  10. Landge, S. M.; Schmidt, A.; Outerbridge, V.; Torok, B. Synlett 2007, 1600-1604.
  11. Pinto, D. C. G. A.; Silva, A. M. S.; Levai, A.; Cavaleiro, J. A. S.; Patonay, T.; Elguero, J. Eur. J. Org. Chem. 2000, 2593-2599.
  12. Zhou, H.-B.; Carlson, K. E.; Stossi, F.; Katzenellenbogen, B. S.; Katzenellenbogen, J. A. Bioorg. Med. Chem. Lett. 2009, 19, 108-110. https://doi.org/10.1016/j.bmcl.2008.11.006
  13. Bagley, M. C.; Lubinu, M. C.; Mason, C. Synlett 2007, 704-708.
  14. Dadiboyena, S.; Valente, E. J.; Hamme II, A. T. Tetrahedron Lett. 2010, 51, 1341-1343. https://doi.org/10.1016/j.tetlet.2010.01.017
  15. Hao, L.; Hong, J.-J.; Zhu, J.; Zhan, Z.-P. Chem. Eur. J. 2013, 19, 5715-5720. https://doi.org/10.1002/chem.201204322
  16. Guo, S.; Wang, J.; Guo, D.; Zhang, X.; Fan, X. RSC Adv. 2012, 2, 3772-3777. https://doi.org/10.1039/c2ra20274c
  17. Guo, S.; Wang, J.; Guo, D.; Zhang, X.; Fan, X. Tetrahedron 2012, 68, 7768-7774. https://doi.org/10.1016/j.tet.2012.07.046
  18. Browne, D. L.; Taylor, J. B.; Plant, A.; Harrity, J. P. A. J. Org. Chem. 2009, 74, 396-400. https://doi.org/10.1021/jo802240e
  19. Browne, D. L.; Vivat, J. F.; Plant, A.; Gomez-Bengoa, E.; Harrity, J. P. A. J. Am. Chem. Soc. 2009, 131, 7762-7769. https://doi.org/10.1021/ja902460n
  20. Kinjo, R.; Donnadieu, B.; Bertrand, G. Angew. Chem. Int. Ed. 2011, 50, 5560-5563. https://doi.org/10.1002/anie.201100740
  21. Deng, X.; Mani, N. S. Org. Lett. 2008, 10, 1307-1310. https://doi.org/10.1021/ol800200j
  22. Deng, X.; Mani, N. S. Org. Lett. 2006, 8, 3505-3508. https://doi.org/10.1021/ol061226v
  23. Deng, X.; Mani, N. S. J. Org. Chem. 2008, 73, 2412-2415. https://doi.org/10.1021/jo7026195
  24. Panda, N.; Jena, A. K. J. Org. Chem. 2012, 77, 9401-9406. https://doi.org/10.1021/jo301770k
  25. Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811-891. https://doi.org/10.1021/cr010043d
  26. Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447-5674. https://doi.org/10.1021/cr900291g
  27. Singh, V.; Batra, S. Tetrahedron 2008, 64, 4511-4574. https://doi.org/10.1016/j.tet.2008.02.087
  28. Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2009, 109, 1-48. https://doi.org/10.1021/cr068057c
  29. Ciganek, E. In Organic Reactions; Paquette, L. A., Ed.; John Wiley & Sons: New York, 1997; Vol. 51, pp 201-350.
  30. Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627-645. https://doi.org/10.2174/1385272023374094
  31. Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481-1490. https://doi.org/10.5012/bkcs.2005.26.10.1481
  32. Gowrisankar, S.; Lee, H. S.; Kim, S. H.; Lee, K. Y.; Kim, J. N. Tetrahedron 2009, 65, 8769-8780. https://doi.org/10.1016/j.tet.2009.07.034
  33. Shi, M.; Wang, F.-J.; Zhao, M.-X.; Wei, Y. The Chemistry of the Morita- Baylis-Hillman Reaction; RSC Publishing: Cambridge, UK, 2011.
  34. Lee, K. Y.; Kim, J. M.; Kim, J. N. Tetrahedron Lett. 2003, 44, 6737-6740. https://doi.org/10.1016/S0040-4039(03)01648-4
  35. Kim, H. S.; Kim, S. H.; Kim, J. N. Bull. Korean Chem. Soc. 2007, 28, 1841-1843. https://doi.org/10.5012/bkcs.2007.28.10.1841
  36. Mamaghani, M.; Dastmard, S. ARKIVOC 2009 (ii), 168-173.
  37. Nikpassand, M.; Mamaghani, M.; Tabatabaeian, K.; Abiazi, M. K. Mol. Divers. 2009, 13, 389-393. https://doi.org/10.1007/s11030-009-9123-2
  38. Lim, C. H.; Kim, S. H.; Park, K. H.; Lee, J.; Kim, J. N. Tetrahedron Lett. 2013, 54, 387-391. https://doi.org/10.1016/j.tetlet.2012.11.020
  39. Lee, C. G.; Lee, K. Y.; Kim, S. J.; Kim, J. N. Bull. Korean Chem. Soc. 2007, 28, 719-720. https://doi.org/10.5012/bkcs.2007.28.5.719
  40. Zhou, R.; Wang, C.; Song, H.; He, Z. Org. Lett. 2010, 12, 976-979. https://doi.org/10.1021/ol902956y
  41. Crist, R. M.; Reddy, P. V.; Borhan, B. Tetrahedron Lett. 2001, 42, 619-621. https://doi.org/10.1016/S0040-4039(00)02021-9
  42. Muthiah, C.; Senthil Kumar, K.; Vittal, J. J.; Kumara Swamy, K. C. Synlett 2002, 1787-1790.
  43. Palmelund, A.; Myers, E. L.; Tai, L. R.; Tisserand, S.; Butts, C. P.; Aggarwal, V. K. Chem. Commun. 2007, 4128-4130.
  44. Yamamoto, S.; Tomita, N.; Suzaki, Y.; Suzuki, T.; Kaku, T.; Hara, T.; Yamaoka, M.; Kanzaki, N.; Hasuoka, A.; Baba, A.; Ito, M. Bioorg. Med. Chem. 2012, 20, 2338-2352. https://doi.org/10.1016/j.bmc.2012.02.005
  45. Silva, V. L. M.; Silva, A. M. S.; Pinto, D. C. G. A.; Elguero, J.; Cavaleiro, J. A. S. Eur. J. Org. Chem. 2009, 4468-4479.
  46. Barawkar, D. A.; Bandyopadhyay, A.; Deshpande, A.; Koul, S.; Kandalkar, S.; Patil, P.; Khose, G.; Vyas, S.; Mone, M.; Bhosale, S.; Singh, U.; De, S.; Meru, A.; Gundu, J.; Chugh, A.; Palle, V. P.; Mookhtiar, K. A.; Vacca, J. P.; Chakravarty, P. K.; Nargund, R. P.; Wright, S. D.; Roy, S.; Graziano, M. P.; Cully, D.; Cai, T.-Q.; Singh, S. B. Bioorg. Med. Chem. Lett. 2012, 22, 4341-4347. https://doi.org/10.1016/j.bmcl.2012.05.020
  47. Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. Org. Lett. 2008, 10, 2377-2379. https://doi.org/10.1021/ol800592s
  48. Cocconcelli, G.; Diodato, E.; Caricasole, A.; Gaviraghi, G.; Genesio, E.; Ghiron, C.; Magnoni, L.; Pecchioli, E.; Plazzi, P. V.; Terstappen, G. C. Bioorg. Med. Chem. 2008, 16, 2043-2052. https://doi.org/10.1016/j.bmc.2007.10.090
  49. Heinisch, G.; Holzer, W.; Nawwar, G. A. M. J. Heterocyclic Chem. 1986, 23, 93-96. https://doi.org/10.1002/jhet.5570230119
  50. Al-Awadi, N. A.; Ibrahim, M. R.; Al-Etaibi, A. M.; Elnagdi, M. H. ARKIVOC 2011 (ii) 310-321.
  51. Abdelhamid, I. A.; Darwish, E. S.; Nasra, M. A.; Abdel-Gallil, F. M.; Fleita, D. H. ARKIVOC 2008, (xvii) 117-121.

Cited by

  1. ]quinolines from Morita-Baylis-Hillman Adducts of 2-Bromobenzaldehydes vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10050
  2. Synthesis of 3-(γ,δ-Disubstituted)allylidene-2-Oxindoles from Isatins by Wittig Reaction with Morita-Baylis-Hillman Bromides vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10053
  3. an Intramolecular Friedel-Crafts Alkenylation vol.36, pp.7, 2015, https://doi.org/10.1002/bkcs.10337
  4. ChemInform Abstract: Regioselective Synthesis of 1,3,4,5-Tetrasubstituted Pyrazoles from α-Alkenyl-α,β-enones Derived from Morita-Baylis-Hillman Adducts. vol.45, pp.9, 2014, https://doi.org/10.1002/chin.201409136
  5. Facile One-Pot Synthesis of 1,3,5-Trisubstituted Pyrazoles from α,β-Enones vol.35, pp.6, 2013, https://doi.org/10.5012/bkcs.2014.35.6.1692
  6. Synthesis of α-Alkenyl α,β-Unsaturated Ketones via Dehydrogermylation of Oxagermacycles with Regeneration of the Germanium(II) Species vol.21, pp.24, 2013, https://doi.org/10.1021/acs.orglett.9b03454
  7. Styrylpyrazoles: Properties, Synthesis and Transformations vol.25, pp.24, 2013, https://doi.org/10.3390/molecules25245886