DOI QR코드

DOI QR Code

The α-Effect in Nucleophilic Substitution Reactions of Y-Substituted-Phenyl X-Substituted-Cinnamates with Butane-2,3-dione Monoximate

  • Kim, Min-Young (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Son, Yu-Jin (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2013.06.21
  • Accepted : 2013.07.03
  • Published : 2013.10.20

Abstract

Second-order rate constants ($k_{Ox^-}$) have been measured spectrophotometrically for nucleophilic substitution reactions of 4-nitrophenyl X-substituted-cinnamates (7a-7e) and Y-substituted-phenyl cinnamates (8a-8e) with butane-2,3-dione monoximate ($Ox^-$) in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The Hammett plot for the reactions of 7a-7e consists of two intersecting straight lines while the Yukawa-Tsuno plot exhibits an excellent linearity with ${\rho}_X$=0.85 and r=0.58, indicating that the nonlinear Hammett plot is not due to a change in the rate-determining step but is caused by resonance stabilization of the ground state (GS) of the substrate possessing an electron-donating group (EDG). The Br${\o}$nsted-type plot for the reactions of Y-substituted-phenyl cinnamates (8a-8e) is linear with ${\beta}_{lg}$ = -0.64, which is typical of reactions reported previously to proceed through a concerted mechanism. The ${\alpha}$-nucleophile ($Ox^-$) is more reactive than the reference normal-nucleophile ($4-ClPhO^-$). The magnitude of the ${\alpha}$-effect (i.e., the $k_{Ox^-}/k_{4-ClPhO^-}$ ratio) is independent of the electronic nature of the substituent X in the nonleaving group but increases linearly as the substituent Y in the leaving group becomes a weaker electron-withdrawing group (EWG). It has been concluded that the difference in solvation energy between $Ox^-$ and $4-ClPhO^-$ (i.e., GS effect) is not solely responsible for the ${\alpha}$-effect but stabilization of transition state (TS) through a cyclic TS structure contributes also to the Y-dependent ${\alpha}$-effect trend (i.e., TS effect).

Keywords

References

  1. Edward, J. O.; Pearson, R. G. J. Am. Chem. Soc. 1962, 84, 16-24. https://doi.org/10.1021/ja00860a005
  2. Buncel, E.; Um, I. H.; Terrier, F. The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids; Wiley Press: West Sussex, 2009, Chapter 17.
  3. Buncel, E.; Um, I. H. Tetrahedron 2004, 60, 7801-7825. https://doi.org/10.1016/j.tet.2004.05.006
  4. Hoz, S.; Buncel, E. Israel J. Chem. 1985, 26, 313-319. https://doi.org/10.1002/ijch.198500113
  5. Grekov, A. P.; Beselov, V. Ya. Russ. Chem. Rev. 1978, 47, 631-648. https://doi.org/10.1070/RC1978v047n07ABEH002243
  6. Fina, N. J.; Edwards, J. O. Int. J. Chem. Kinet. 1973, 5, 1-26. https://doi.org/10.1002/kin.550050102
  7. Garver, J. M.; Yang, Z.; Wehres, N.; Nichols, C. M.; Worker, B. B.; Bierbaum, V. M. Int. J. Mass Spectrom. 2012, 330-332,182-190. https://doi.org/10.1016/j.ijms.2012.07.016
  8. Garver, J. M.; Yang, Z.; Nichols, C. M.; Worker, B. B.; Gronert, S.; Bierbaum, V. M. Int. J. Mass Spectrom. 2012, 316-318, 244-250. https://doi.org/10.1016/j.ijms.2012.02.014
  9. Garver, J. M.; Gronert, S.; Bierbaum, V. M. J. Am. Chem. Soc. 2011, 133, 13894-13897. https://doi.org/10.1021/ja205741m
  10. Villano, S. M.; Eyet, N.; Lineberger, W. C.; Bierbaum, V. M. J. Am. Chem. Soc.2009, 131, 8227-8233. https://doi.org/10.1021/ja9012084
  11. Depuy, C. H.; Della, E. W.; Filley, J.; Grabowski, J. J.; Bierbaum, V. M. J. Am. Chem. Soc. 1983, 105,2481-2482. https://doi.org/10.1021/ja00346a066
  12. Ritchie, J. F. J. Am. Chem. Soc. 1983, 105, 7313-7318. https://doi.org/10.1021/ja00363a018
  13. Wei, X. G.; Sun, X. M.; Wu, W. P.; Ren, Y.; Wong, N. B.; Li, W. K. J. Org. Chem. 2010, 75, 4212-4217. https://doi.org/10.1021/jo1006575
  14. Ren, Y.; Yamataka, H. J. Comput. Chem. 2009, 30, 358-365. https://doi.org/10.1002/jcc.21061
  15. Ren, Y.; Yamataka, H. J. Org. Chem. 2007, 72, 5660-5667. https://doi.org/10.1021/jo070650m
  16. Ren, Y.; Yamataka, H.Chem. Eur. J. 2007, 13, 677-682. https://doi.org/10.1002/chem.200600203
  17. Ren, Y.; Yamataka, H. Org.Lett. 2006, 8, 119-121. https://doi.org/10.1021/ol0526930
  18. McAnoy, A. M.; Paine, M. R.; Blanksby, S. J. Org. Biomol. Chem.2008, 6, 2316-2326. https://doi.org/10.1039/b803734e
  19. Patterson, E. V.; Fountain, K. R. J. Org. Chem. 2006, 71, 8121-8125. https://doi.org/10.1021/jo061275l
  20. Kirby, A. J.; Davies, J. E.; Fox, D. J.; Hodgson, D. R.; Goeta, A. E.; Lima, M. F.; Priebe, J. P.; Santaballa, J. A.; Nome, F. Chem.Commun. 2010, 1302-1304.
  21. Kirby, A. J.; Tondo, D. W.;Medeiros, M.; Souza, B. S.; Priebe, J. P.; Lima, M. F.; Nome, F. J. Am. Chem. Soc. 2009, 131, 2023-2028. https://doi.org/10.1021/ja808746f
  22. Kirby, A. J.; Souza, B.S.; Medeiros, M.; Priebe, J. P.; Manfredi, A. M.; Nome, F. Chem. Commun. 2008, 4428-4429.
  23. Kirby, A. J.; Lima, M. F.; da Silva, D.; Roussev, C. D.; Nome, F. J. Am. Chem. Soc. 2006, 128, 16944-16952. https://doi.org/10.1021/ja066439u
  24. Terrier, F.; Rodriguez-Dafonte, P.; Le Guevel, E.; Moutiers, G. Org. Biomol. Chem. 2006, 4, 4352-4363. https://doi.org/10.1039/b609658c
  25. Terrier, F.; Le Guevel, E.; Chatrousse, A. P.; Moutiers, G.; Buncel,E. Chem. Commun. 2003, 600-601.
  26. Buncel, E.; Cannes, C.; Chatrousse, A. P.; Terrier, F. J. Am. Chem. Soc. 2002, 124, 8766-8767. https://doi.org/10.1021/ja020379k
  27. Fountain, K. R. J. Phys. Org. Chem. 2005, 18, 481-485. https://doi.org/10.1002/poc.897
  28. Fountain, K. R.; Felkerson, C. J.; Driskell, J. D.; Lamp, B. D. J. Org. Chem. 2003, 68, 1810-1814. https://doi.org/10.1021/jo0206263
  29. Domingos, J. B.; Longhinotti, E.; Brandao, T. A. S.; Santos, L. S.; Eberlin, M. N.; Bunton, C. A.; Nome, F. J. Org. Chem. 2004,69, 7898-7905. https://doi.org/10.1021/jo048737k
  30. Bunton, C. A.; Nome, F.; Quina, F. H.; Romsted, L. S. Acc. Chem. Res. 1991, 24, 357-364. https://doi.org/10.1021/ar00012a001
  31. Ghosh, K. K.; Tiwari, S.; Marek, J.; Kuca, K. Lett. Drug Design & Discov. 2010, 7, 194-199. https://doi.org/10.2174/157018010790596650
  32. Ghosh, K. K.; Tiwari, S.; Marek, J.; Kuca, K. J. Chem. & Engin. Data 2010, 55, 1153-1157. https://doi.org/10.1021/je9005773
  33. Ghosh, K. K.; Sinha, D.; Satnami, M. L.; Dubey, D. K.; Rodriguez-Dafonte, P.; Mundhara, G. L. Langmuir 2005, 21,8664-8669. https://doi.org/10.1021/la051223b
  34. Shrivastava, A.; Ghosh, K. K. J. Mol. Liq. 2008, 141, 99-101. https://doi.org/10.1016/j.molliq.2008.03.008
  35. Bernasconi, C. F.; Leyes, A. E.; Eventova, I.; Rappoport, Z. J. Am. Chem. Soc. 1995, 117, 1703-1711. https://doi.org/10.1021/ja00111a006
  36. Buncel, E.; Um, I. H. Chem. Commun. 1986, 595.
  37. Um, I. H.; Buncel, E. J. Org. Chem. 2000, 65, 577-582. https://doi.org/10.1021/jo9915776
  38. Um, I. H.; Lee, E. J.; Buncel, E. J. Org. Chem. 2001, 66, 4859-4864. https://doi.org/10.1021/jo0156114
  39. Um, I. H.; Hong, J. Y.; Buncel, E. Chem. Commun. 2001, 27-28.
  40. Um, I. H.; Buncel, E. J. Am. Chem. Soc. 2001, 123, 11111-11112. https://doi.org/10.1021/ja016917v
  41. Um, I. H.; Shin, Y. H.; Han, J. Y.; Buncel, E. Can. J.Chem. 2006, 84, 1550-1556. https://doi.org/10.1139/v06-156
  42. Um, I. H.; Han, J. Y.; Buncel, E.Chem. Eur. J. 2009, 15, 1011-1017 https://doi.org/10.1002/chem.200801534
  43. Um, I. H.; Im, L. R.;Buncel, E. J. Org. Chem. 2010, 75, 8571-8577. https://doi.org/10.1021/jo101978x
  44. Um, I. H.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475-8480. https://doi.org/10.1021/jo026339g
  45. Um, I. H.; Chung, E. K.; Lee, S. M. Can. J. Chem. 1998, 76, 729-737.
  46. Son, Y. J.; Kim, E. H.; Kang, J. S.; Um, I. H. Bull. Korean Chem. Soc. 2013, 34, 2455-2460. https://doi.org/10.5012/bkcs.2013.34.8.2455
  47. Carroll, F. A. Perspectives on Structure and Mechanism in Organic Chemistry; Brooks/Cole: New York, 1988; pp 371-386.
  48. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper Collins Publishers: New York, 1987; pp 143-151.
  49. Tsuno, Y.; Fujio, M. Adv. Phys. Org. Chem. 1999, 32, 267-385.
  50. Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139. https://doi.org/10.1039/cs9962500129
  51. Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965-970. https://doi.org/10.1246/bcsj.32.965
  52. Than, S.; Badal, M.; Itoh, S.; Mishima, M. J. Phys. Org. Chem. 2010, 23, 411-417.
  53. Itoh, S.; Badal, M.; Mishima, M. J. Phys. Org. Chem. 2009, 113, 10075-10080. https://doi.org/10.1021/jp904159u
  54. Than, S.; Maeda, H.; Irie, M.; Kikukawa, K.; Mishima, M. Int. J. Mass Spectrom. 2007, 267, 205-214. https://doi.org/10.1016/j.ijms.2007.02.037
  55. Maeda, H.; Irie, M.; Than, S.; Kikukawa, K.; Mishima, M. Bull. Chem. Soc. Jpn. 2007, 80, 195-203. https://doi.org/10.1246/bcsj.80.195
  56. Fujio, M.; Alam, M. A.; Umezaki, Y.; Kikukawa, K.; Fujiyama, R.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2007, 80, 2378-2383. https://doi.org/10.1246/bcsj.80.2378
  57. Um, I. H.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475-8480. https://doi.org/10.1021/jo026339g
  58. Um, I. H.; Park, Y. M.; Fujio, M.; Mishima, M.; Tsuno, Y. J. Org. Chem. 2007, 72, 4816-4821. https://doi.org/10.1021/jo0705061
  59. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970-6980. https://doi.org/10.1021/ja00463a033
  60. Castro, E. A.; Campodonico, P. R.; Contreras, R.; Fuentealba, P.; Santos, J. G.; Leis, J. R.; Garcia-Rio, L.; Saez, J. A.; Domingo, L. R. Tetrahedron 2006, 62, 2555-2562. https://doi.org/10.1016/j.tet.2005.12.044
  61. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088-8092. https://doi.org/10.1021/jo051168b
  62. Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493-5499. https://doi.org/10.1021/jo0700934
  63. Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629. https://doi.org/10.1021/jo050606b
  64. Um, I. H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org. Chem. 2006, 71, 9191-9197. https://doi.org/10.1021/jo061682x
  65. Um, I. H.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803. https://doi.org/10.1021/jo0606958
  66. Um, I. H.; Lee, H. W.; Nagano, Y.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2005, 70, 4980-4987. https://doi.org/10.1021/jo050172k

Cited by

  1. 2 reaction vol.36, pp.11, 2015, https://doi.org/10.1002/jcc.23862
  2. Kinetic Study on Nucleophilic Displacement Reactions of 2-Chloro-4-Nitrophenyl X-Substituted-Benzoates with Primary Amines: Reaction Mechanism and Origin of the α-Effect vol.35, pp.2, 2013, https://doi.org/10.5012/bkcs.2014.35.2.436
  3. Mechanistic study of carboxylic acid and phosphate ester cleavage by oximate metal complexes surpassing the limiting reactivity of highly basic free oximate anions vol.49, pp.8, 2013, https://doi.org/10.1039/c9dt04733f