THE HESTOCK AND HENSTOCK DELTA INTEGRALS

Jae Myung Park*, Deok Ho Lee**, Ju Han Yoon***, Young Kuk Kim****, and Jong Tae Lim****

ABSTRACT. In this paper, we study the Henstock delta integral, which generalizes the Henstock integral. In particular, we study the relation between the Henstock and Henstock delta integrals.

1. Introduction and preliminaries

The Henstock delta integral on time scales was introduced by Allan Peterson and Bevan Thompson [2].

In this paper, we investigate the relation between the Henstock and Henstock delta integrals.

First, we introduce some concepts related to the notion of time scales. A time scale \mathbb{T} is any closed nonempty subset of \mathbb{R} , with the topology inherited from the standard topology on the real numbers \mathbb{R} . For each $t \in \mathbb{T}$, we define the forward jump operator $\sigma(t)$ by

$$\sigma(t) = \inf\{z > t : z \in \mathbb{T}\}\$$

and the backward jump operator $\rho(t)$ by

$$\rho(t) = \sup\{z < t : z \in \mathbb{T}\}\$$

where $\inf \phi = \sup \mathbb{T}$ and $\sup \phi = \inf \mathbb{T}$.

If $\sigma(t) > t$, we say the t is right-scattered, while if $\rho(t) < t$, we say that t is left-scattered. If $\sigma(t) = t$, we say that t is right-dense, while if $\rho(t) = t$, we say that t is left-dense. The forward graininess function $\mu(t)$ is defined by $\mu(t) = \sigma(t) - t$, and the backward graininess function $\nu(t)$ is defined by $\nu(t) = t - \rho(t)$.

Received March 18, 2013; Accepted April 18, 2013.

²⁰¹⁰ Mathematics Subject Classification: Primary 26A39; Secondary 26E70.

Key words and phrases: time scales, Henstock delta integral, \triangle -gauge.

Correspondence should be addressed to Ju Han Yoon, yoonjh@chnu.ac.kr.

^{*}This work was supported by the research grant of the Chungbuk National University in 2011.

For $a, b \in \mathbb{T}$, we define the time scale interval in \mathbb{T} by

$$[a,b]_{\mathbb{T}} = \{t \in \mathbb{T} : a \le t \le b\}.$$

2. The Henstock and Henstock delta integrals

DEFINITION 2.1. ([2]) $\delta = (\delta_L, \delta_R)$ is a \triangle -gauge on $[a, b]_{\mathbb{T}}$ by $\delta_L(t) > 0$ on $(a, b]_{\mathbb{T}}$, $\delta_R(t) > 0$ on $[a, b)_{\mathbb{T}}$, $\delta_L(a) \geq 0$, $\delta_R(b) \geq 0$, and $\delta_R(t) \geq \mu(t)$ for each $t \in [a, b)_{\mathbb{T}}$.

DEFINITION 2.2. ([2]) A collection $\mathcal{P} = \{(\xi_i, [t_{i-1}, t_i]_{\mathbb{T}})\}_{i=1}^n$ of tagged intervals is a Henstock partition of $[a, b]_{\mathbb{T}}$ if $\bigcup_{i=1}^n [t_{i-1}, t_i]_{\mathbb{T}} = [a, b]_{\mathbb{T}}$, $[t_{i-1}, t_i]_{\mathbb{T}} \subset [\xi_i - \delta_L(\xi_i), \xi_i + \delta_R(\xi_i)]$ and $\xi_i \in [t_{i-1}, t_i]_{\mathbb{T}}$ for each $i = 1, 2, \dots, n$.

For Henstock partition $\mathcal{P} = \{(\xi_i, [t_{i-1}, t_i])\}_{i=1}^n$, we write

$$S(f, \mathcal{P}) = \sum_{i=1}^{n} f(\xi_i)(t_i - t_{i-1}),$$

whenever $f:[a,b]_{\mathbb{T}}\to\mathbb{R}$.

DEFINITION 2.3. ([2]). A function $f:[a,b]_{\mathbb{T}}\to\mathbb{R}$ is Henstock delta integrable (or H_{\triangle} -integral) on $[a,b]_{\mathbb{T}}$ if there exists a number A such that for each $\epsilon>0$ there exists a \triangle -gauge δ on $[a,b]_{\mathbb{T}}$ such that

$$|S(f, \mathcal{D}) - A| < \epsilon$$

for every δ -fine Henstock partition \mathcal{D} of $[a,b]_{\mathbb{T}}$. A number A is called the H_{\triangle} -integral of f on $[a,b]_{\mathbb{T}}$, and we write $A=(H_{\triangle})\int_a^b f_{\triangle}t$.

Recall that $f:[a,b]\to\mathbb{R}$ is Henstock integrable (or H-integrable) on [a,b] if there exists a number A such that for each $\varepsilon>0$ there exists a gauge $\delta:[a,b]\to\mathbb{R}^+$ on [a,b] such that

$$\left| S(f, \mathcal{P}) - A \right| < \epsilon$$

for every δ -fine Henstock partition \mathcal{P} of [a, b].

THEOREM 2.4. A function $f:[a,b] \to \mathbb{R}$ is H-integrable on [a,b] if and only if f is H_{\triangle} -integrable on [a,b].

Proof. Let f be H-integrable on [a, b] and let $\epsilon > 0$. Then there exists a gauge $\delta : [a, b] \to \mathbb{R}^+$ such that

$$\left| S(f, \mathcal{P}) - (H) \int_{a}^{b} f \right| < \epsilon$$

for every δ -fine Henstock partition \mathcal{P} of [a, b].

Define $\delta^* = (\delta_L, \delta_R)$ by $\delta_L(t) = \delta_R(t) = \frac{\delta}{2}$ for each $t \in [a, b]$. Assume that $\mathcal{P} = \{(\xi_i, [t_{i-1}, t_i])\}_{i=1}^n$ is a δ^* -fine partition of [a, b]. Then \mathcal{P} is δ -fine and

$$\left| S(f, \mathcal{P}) - (H) \int_{a}^{b} f \right| < \epsilon.$$

Hence f is H_{\triangle} -integrable on [a, b] and $(H_{\triangle}) \int_a^b f \triangle t = (H) \int_a^b f$. Conversely, assume that f is H_{\triangle} -integrable on [a, b] and let $\epsilon > 0$. Then there exists a \triangle -gauge $\delta^* = (\delta_L, \delta_R)$ such that

$$\left| S(f, \mathcal{P}) - (H_{\triangle}) \int_{a}^{b} f \triangle t \right| < \epsilon$$

for every δ^* -fine partition \mathcal{P} of [a, b].

Define

$$\delta(t) = \begin{cases} \min\{\delta_L(t), \delta_R(t)\} & \text{if } t \in (a, b) \\ \delta_R(t) & \text{if } t = a \\ \delta_L(t) & \text{if } t = b. \end{cases}$$

Assume that $\mathcal{P} = \{(\xi_i, [t_{i-1}, t_i])\}_{i=1}^n$ is a δ -fine partition of [a, b]. Then \mathcal{P} is δ^* -fine and

$$\left| S(f, \mathcal{P}) - (H_{\triangle}) \int_{a}^{b} f \triangle t \right| < \epsilon.$$

Hence f is H-integrable on [a,b] and $(H) \int_a^b f = (H_{\triangle}) \int_a^b f \triangle t$.

Let $f:[a,b]_{\mathbb{T}}\to\mathbb{R}$ be a function on $[a,b]_{\mathbb{T}}$, and let $\{(a_k,b_k)\}_{k=1}^{\infty}$ be the sequence of intervals contiguous to $[a,b]_{\mathbb{T}}$ in [a,b].

Define a function $f^*:[a,b]\to\mathbb{R}$ on [a,b] by

$$f^*(t) = \begin{cases} f(a_k) & \text{if } t \in (a_k, b_k) \text{ for some } k \\ f(t) & \text{if } t \in [a, b]_{\mathbb{T}}. \end{cases}$$

Then we have the following theorem.

THEOREM 2.5. If $f^*: [a,b] \to \mathbb{R}$ is H-integrable on [a,b], then $f: [a,b]_T \to \mathbb{R}$ is H_{\triangle} -integrable on $[a,b]_T$ and $(H_{\triangle}) \int_a^b f \triangle t = (H) \int_a^b f^*$.

Proof. Let $f^*: [a,b] \to \mathbb{R}$ be H-integrable on [a,b] and let $\epsilon > 0$. By theorem 2.4, there exists a \triangle -gauge $\delta = (\delta_L, \delta_R)$ on [a, b] such that

$$\left|S(f^*, \mathcal{P}) - (H) \int_a^b f^* \right| < \frac{\epsilon}{2}$$

for every δ -fine Henstock partition \mathcal{P} of [a, b].

Define a \triangle -gauge $\delta^* = (\delta_L^*, \delta_R^*)$ on $[a, b]_{\mathbb{T}}$ by

$$\delta_L^*(t) = \delta_L(t)$$

$$\delta_R^*(t) = \left\{ \begin{array}{l} \delta_R(t) \text{ if } t \text{ is a right-dense point of } [a,b]_{\mathbb{T}} \\ \sigma(t) - t \text{ if } t \text{ is a right-scattered point of } [a,b]_{\mathbb{T}}. \end{array} \right.$$

Let $\mathcal{D} = \{(\xi_i, [t_{i-1}, t_i])\}_{i=1}^n$ be a δ^* -fine partition of $[a, b]_{\mathbb{T}}$. Define $A = \{i : \xi_i \text{ is a right} - \text{scattered point of } [a, b]_T \text{ and }$

$$[\xi_i, \sigma(\xi_i)] \subset [t_{i-1}, t_i]\},$$

$$A_1 = \{i \in A : t_{i-1} = \xi_i\}, A_2 = \{i \in A : t_{i-1} < \xi_i\}, \text{ and }$$

$$B = \{1, 2, 3, \cdots, n\} - A.$$

Let $D_0 = \{(\xi_i, [t_{i-1}, t_i]) : i \in B\}$. Then D_0 is a δ -fine partial partition of [a,b]. For each $i \in A$, there is a δ -fine partition D'_i of $[\xi_i, \sigma(\xi_i)]$ such that

$$\left| S(f^*, D_i') - (H) \int_{\xi_i}^{\sigma(\xi_i)} f^* \right| < \frac{\epsilon}{2n}.$$

For each $i \in A$, let $D_i = \begin{cases} D'_i \text{ if } i \in A \\ D'_i \bigcup \{(\xi_i, [t_{i-1}, \xi_i])\} \text{ if } i \in A_2. \end{cases}$ Then $\mathcal{P} = D_0 \cup [\bigcup_{i \in A} D_i]$ is a δ -fine partition of [a, b] and we have

$$\begin{split} \left| S(f,D) - (H) \int_{a}^{b} f^{*} \right| \\ & \leq \left| S(f,D) - S(f^{*},\mathcal{P}) \right| + \left| S(f^{*},\mathcal{P}) - (H) \int_{a}^{b} f^{*} \right| \\ & \leq \sum_{i \in A_{1}} \left| f(\xi_{i})(t_{i} - t_{i-1}) - S(f^{*},D_{i}) \right| \\ & + \sum_{i \in A_{2}} \left| f(\xi_{i})(t_{i} - t_{i-1}) - S(f^{*},D_{i}) \right| + \frac{\epsilon}{2} \\ & = \sum_{i \in A_{1}} \left| f(\xi_{i})(\sigma(\xi_{i}) - \xi_{i}) - S(f^{*},D'_{i}) \right| \\ & + \sum_{i \in A_{2}} \left| f(\xi_{i})(\sigma(\xi_{i}) - \xi_{i}) - S(f^{*},D'_{i}) \right| + \frac{\epsilon}{2} \end{split}$$

$$= \sum_{i \in A} \left| (H) \int_{\xi_i}^{\sigma(\xi_i)} f^* - S(f^*, D_i') \right| + \frac{\epsilon}{2}$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} < \epsilon.$$

Hence, f is H_{\triangle} -integral on $[a,b]_{\mathbb{T}}$ and $(H_{\triangle})\int_a^b f \triangle t = (H)\int_a^b f^*$. \square

References

- [1] R. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, Results Math. 35 (1999), 3-22.
- [2] A. Perterson and B. Thompson, Henstock CKurzweil Delta and Nabla Integral,
 J. Math. Anal. Appl. 323 (2006), 162-178.
- [3] G. Sh. Guseinov, Intergration on time scales, J. Math. Anal. Appl. 285 (2003), 107-127.
- [4] G. Sh. Guseinov and B. Kaymakcalan, *Basics of Riemann delta and nabla integration on time scales*, J. Difference Equations Appl. 8 (2002), 1001-1027.
- [5] S. Avsec, B. Bannish, B. Johnson, and S. Meckler, The Henstock-Kurzweil delta integral on unbounded time scales, PanAmerican Math. J. 16 (2006), no. 3, 77-98.
- [6] B. S. Thomson, Henstock Kurzweil integtals on time scales, PanAmerican Math J. 18 (2008), no. 1, 1-19.
- [7] C. W. Swartz and D. S. Kurtz, Theories of Integration: The Integrals of Riemann Lebesgue, Henstock-Kurzweil, and Mcshane, World Scientific, 2004.

*

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: parkjm@cnu.ac.kr

**

Department of Mathematics Education Kongju National University Kongju 314-701, Republic of Korea *E-mail*: dhlee@kongju.ac.kr

Department of Mathematics Education Chungbuk National University Chungju 360-763, Republic of Korea E-mail: yoonjh@cbnu.ac.kr

Department of Mathematics Education Seowon University Chungju 361-742, Republic of Korea *E-mail*: ykkim@dragon.seowon.ac.kr

Department of Mathematics Chungnam University Daejeon 305-764, Republic of Korea E-mail: ssongtae@edurang.dje.go.kr