JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **26**, No. 1, 2013

CATEGORY OF MAPS AND GOTTLIEB SETS FOR MAPS, AND THEIR DUALS

YEON SOO YOON*

ABSTRACT. In this paper, we introduce and study the concepts of WC_k^f -spaces with respect to spaces which are generalized concepts of C_k^f -spaces for maps, and introduce the dual concepts of WC_k^f -spaces with respect to spaces and obtain some dual results.

1. Introduction

Throughout this paper, a space means a space of the homotopy type of a locally finite connected CW complex. All maps shall mean continuous functions. It is known that any space X is filtered by the projective spaces of ΩX by a result of Milnor [8] and Stasheff [10];

$$\Sigma \Omega X = P^1(\Omega X) \hookrightarrow P^2(\Omega X) \hookrightarrow \dots \hookrightarrow P^\infty(\Omega X) \simeq X.$$

For each k, let $e_k^X : P^k(\Omega X) \to P^\infty(\Omega X) \simeq X$ be the natural inclusion. Let $f : A \to X$ be a map. A space X is called [5] a C_k^f -space if the inclusion $e_k^X : P^k(\Omega X) \to X$ is f-cyclic. It is known [5] that a space X is a C_k^f -space for a map $f : A \to X$ if and only if $G^f(Z, X) = [Z, X]$ for any space Z with cat $Z \leq k$. For any spaces Z, X, we define mapcat $(Z, X) \leq k$ if for any map $g : Z \to X$, cat $g \leq k$. It is known that if cat $Z \leq k$, then mapcat $(Z, X) \leq k$, but the converse does not hold(see Example 2.6).

In this paper, we introduce the concepts of WC_k^f -spaces with respect to spaces which are generalizations of C_k^f -spaces for maps [5] and study some properties of WC_k^f -spaces with respect to spaces. We show that for a space Z with mapcat $(Z, X) \leq k$, a space X is a WC_k^f -space with

Received January 10, 2013; Accepted January 21, 2013.

²⁰¹⁰ Mathematics Subject Classification: Primary 55P45, 55P35.

Key words and phrases: f-cyclic maps, categories of maps, p-cocyclic maps, co-categories of maps.

The author was supported by Hannam University Research Fund, 2012.

respect to Z if and only if $G^f(Z, X) = [Z, X]$. Let $f : A \to X$ and $g : B \to Y$ be any maps and Z a space with mapcat $(Z, X) \leq k$. Then we show that the product space $X \times Y$ is a $WC_k^{f \times g}$ -space with respect to Z if and only if X is a WC_k^f -space with respect to Z and Y is a WC_k^g -space with respect to Z. We also introduce the dual concepts of WC_k^f -spaces with respect to spaces and obtain some dual results.

2. WC_k^f -spaces with respect to spaces

The LS category of X [3], denoted cat X, is the least integer k such that X is the union of k + 1 open sets U_i , each contractible in X. We now recall the following Ganea's theorems [3].

THEOREM 2.1. ([3],[4]) The category cat $X \leq k$ if and only if $e_k^X : P^k(\Omega X) \to X$ has a right homotopy inverse.

The definition of LS category extends from spaces to continuous maps as follows. Let $g: X \to Y$ be a map. The *LS category of* g [3], denoted *cat* g is the least integer k such that X is the union of k + 1 open sets U_i for which the restriction of g to each U_i is homotopic to a constant map $U_i \to *$. Note that *cat* $X = cat 1_X$.

THEOREM 2.2. [3] Let $g: Z \to X$ be a map. Then the category cat $g \leq k$ if and only if there is a map $\bar{g}: Z \to P^k(\Omega X)$ such that $e_k^X \circ \bar{g} \sim g: Z \to X$, where $e_k^X: P^k(\Omega X) \to X$ is the natural inclusion.

DEFINITION 2.3. Let Z, X be any two spaces. The mapcategory of mapping space from Z to X is less than equal to k, mapcat $(Z, X) \leq k$, means that for any map $g: Z \to X$, cat $g \leq k$.

It is clear that mapcat $(Z, X) \leq k$ if and only if $(e_k^X)_{\#} : [Z, P^k(\Omega X)] \to [Z, X]$ is an epimorphism.

The following propositions say that a relationship between category of a space and mapcategory of a mapping space.

PROPOSITION 2.4. cat $Z \leq k$ if and only if for any space X, mapcat $(Z, X) \leq k$.

Proof. Suppose that $cat \ Z \le k$. Then there is a map $s_k^Z : Z \to P^k(\Omega Z)$ such that $e_k^Z \circ s_k^Z \sim 1$. Let X be a space and $g : Z \to X$ a map. We see $e_k^X \circ P^k(\Omega g) \sim g \circ e_k^Z$ by the naturality of the construction of

 $P^k(\Omega Z)$ as is shown in the following homotopy commutative diagram;

$$\begin{array}{ccc} P^k(\Omega Z) & \xrightarrow{P^k(\Omega g)} & P^k(\Omega X) \\ e^Z_k & & e^X_k \\ Z & \xrightarrow{g} & X. \end{array}$$

Thus we have a map $\bar{g} = P^k(\Omega g) \circ s_k^Z : Z \to P^k(\Omega X)$ such that $e_k^X \circ \bar{g} \sim g$. Thus we know mapcat $(Z, Y) \leq k$. On the other hand, suppose that for any space X, the mapcategory mapcat $(Z, X) \leq k$. Taking X = Z and $g = 1_Z$, then we know that $cat Z \leq k$.

PROPOSITION 2.5. cat $X \leq k$ if and only if for any space Z, mapcat $(Z, X) \leq k$.

Proof. Suppose that cat $X \leq k$. Then there is a map $s_k^X : X \to P^k(\Omega X)$ such that $e_k^X \circ s_k^X \sim 1$. Let Z be a space and $g : Z \to X$ a map. Then we have $e_k^X \circ (s_k^X \circ g) \sim 1_X \circ g \sim g$ and mapcat $(Z, X) \leq k$. On the other hand, suppose that for any space Z, the mapcategory mapcat $(Z, X) \leq k$. Taking Z = X and $g = 1_X$, then we know that cat $X \leq k$.

In general, if $cat \ Z \leq k$, then $mapcat \ (Z, X) \leq k$ for a space X, but the converse does not hold by the following example.

EXAMPLE 2.6. It is well known fact that $cat \mathbb{C}P^n = n$. Thus if we take $X = \mathbb{C}P^k$ and $Z = \mathbb{C}P^{k+1}$, then we know, from Proposition 2.5, that mapcat $(Z, X) \leq k$, but cat Z = k + 1.

Let $f : A \to X$ be a map. A based map $g : B \to X$ is called *f-cyclic* [12] if there is a map $\phi : A \times B \to X$ such that the diagram

$$\begin{array}{ccc} A \times B & \stackrel{\phi}{\longrightarrow} & X \\ i & & & \nabla \\ A \lor B & \stackrel{(f \lor g)}{\longrightarrow} & X \lor X \end{array}$$

is homotopy commute, where $j: A \vee B \to A \times B$ is the inclusion and $\nabla: X \vee X \to X$ is the folding map. Clearly, g is f-cyclic iff f is gcyclic. In the case, $f = 1_X : X \to X$, $g: B \to X$ is called cyclic [15]. We denote the set of all homotopy classes of f-cyclic maps from B to X by $G^f(B,X) \subset [B,X]$ which is called the *Gottlieb set for a* map $f: A \to X$. If $f = 1_X : X \to X$, then we recover the *Gottlieb* set $G(B,X) = G^{1_X}(B,X)$ defined by Varadarajan [11]. In general,

 $G(B,X) \subset G^f(B,X) \subset [B,X]$ for any spaces A, B, X and any map $f: A \to X$.

It is shown [14] that $G(S^5, S^5 \times S^5) \cong 2\mathbb{Z} \oplus 2\mathbb{Z} \neq G^{i_1}(S^5, S^5 \times S^5) \cong 2\mathbb{Z} \oplus \mathbb{Z} \neq [S^5, S^5 \times S^5] \cong \mathbb{Z} \oplus \mathbb{Z}$. It is introduced [5] that a space X is called a C_k^f -space if the inclusion $e_k^X : P^k(\Omega X) \to X$ is f-cyclic.

LEMMA 2.7. Let $f : A \to X$ be a map. Then $g : B \to X$ is f-cyclic if and only if $(g)_{\#}([Z,B]) \subset G^{f}(Z,X)$ for any space Z.

Proof. Suppose that $g: B \to X$ is f-cyclic. Let Z be a space and $\theta: Z \to B$ a map. Since $g: B \to X$ is f-cyclic, there is a map $G: A \times B \to X$ such that $Gj \sim \nabla(f \lor g)$, where $j: A \lor B \to A \times B$ is the inclusion and $\nabla: X \lor X \to X$ is the folding map. Then $\phi = G(1 \times \theta): A \times Z \to X$ satisfies $\phi j \sim \nabla(f \lor g\theta)$. Thus we have $g_{\#}([Z, B]) \subset G^{f}(Z, X)$ for any space Z. On the other hand, taking Z = B and $1_{B}: B \to B \in [B, B]$. Since $g \sim g_{\#}(1_{B}) \in G^{f}(B, X), g: B \to X$ is f-cyclic. \Box

THEOREM 2.8. [5] A space X is a C_k^f -space for a map $f : A \to X$ if and only if $G^f(Z, X) = [Z, X]$ for any space Z with cat $Z \leq k$.

Example 2.9.

(1) The torus T^k is a space with $mapcat(T^k, X) \leq k$. It is well known fact that $cat \ T^k = k$. Thus we know, from Proposition 2.4, that $mapcat(T^k, X) \leq k$, that is, $(e_k^X)_{\#} : [T^k, P^k(\Omega X)] \to [T^k, X]$ is an epimorphism.

(2) If a space Z satisfy $cat Z \leq k$, then Z is also a space with $mapcat(Z, X) \leq k$ from Proposition 2.4.

DEFINITION 2.10. Let $f : A \to X$ be a map and Z a space with mapcat $(Z, X) \leq k$. Then a space X is called a WC_k^f -space with respect to a space Z if $(e_k^X)_{\#}([Z, P^k(\Omega X]) \subset G^f(Z, X))$, where $e_k^X : P^k(\Omega X) \to X$ is the natural inclusion.

THEOREM 2.11. Let $f : A \to X$ be a map and Z space with mapcat $(Z, X) \leq k$. A space X is a WC_k^f -space with respect to Z if and only if $G^f(Z, X) = [Z, X]$.

Proof. Suppose that X is a WC_k^f -space with respect to Z. Since mapcat $(Z, X) \leq k$, $(e_k^X)_{\#} : [Z, P^k(\Omega X)] \to [Z, X]$ is an epimorphism. Since X is a WC_k^f -space with respect to $Z, [Z, X] = (e_k^X)_{\#}([Z, P^k(\Omega X)]) \subset G^f(Z, X)$ and $G^f(Z, X) = [Z, X]$.

Conversely, assume that $G^{f}(Z, X) = [Z, X]$. Thus we know $(e_{k}^{X})_{\#}([Z, P^{k}(\Omega X)]) = [Z, X] \subset G^{f}(Z, X)$ and X is a WC_{k}^{f} -space with respect to Z.

We have the following corollary from Theorem 2.8 and Example 2.9.

COROLLARY 2.12. X is a C_k^f -space if and only if for each space Z with cat $Z \leq k$, X is a WC_k^f -space with respect to Z.

THEOREM 2.13. Let $f : A \to X$ and $g : B \to Y$ be any maps and Za space with mapcat $(Z, X) \leq k$. Then the product space $X \times Y$ is a $WC_k^{f \times g}$ -space with respect to Z if and only if X is a WC_k^f -space with respect to Z and Y is a WC_k^g -space with respect to Z.

Proof. Suppose $X \times Y$ is a $WC_k^{f \times g}$ -space with respect to Z. It is known [5] that $G^{f \times g}(Z, X \times Y) \cong G^f(Z, X) \times G^g(Z, Y)$ for any space Z. Since Z is a space with mapcat $(Z, X) \leq k$, we have, from Theorem 2.11, that $G^f(Z, X) \times G^g(Z, Y) \cong G^{f \times g}(Z, X \times Y) = [Z, X \times Y] = [Z, X] \times [Z, Y]$ and hence $G^f(Z, X) = [Z, X]$ and $G^g(Z, Y) = [Z, Y]$. Thus X is a WC_k^f -space with respect to Z and Y is a WC_k^g -space with respect to Z.

Conversely, suppose that X is a WC_k^f -space with respect to Z and Y is a WC_k^g -space with respect to Z. Then $G^f(Z, X) = [Z, X]$ and $G^g(Z, Y) = [Z, Y]$ by Theorem 2.11. It follows that $G^{f \times g}(Z, X \times Y) \cong G^f(Z, X) \times G^g(Z, Y) = [Z, X] \times [Z, Y] = [Z, X \times Y]$. Thus $X \times Y$ is a $WC_k^{f \times g}$ -space with respect to Z. \Box

3. DWC_k^p -spaces with respect to spaces

In [3], Ganea introduced the concept of cocategory of a space as follows; Let X be a any space. Define a sequence of cofibrations

$$\mathcal{C}_k: X \xrightarrow{e'_k} F_k \xrightarrow{s'_k} B_k \ (k \ge 0)$$

as follows, let $C_0: X \xrightarrow{e'_0} cX \xrightarrow{s'_0} \Sigma X$ be the standard cofibration. Assuming C_k to be defined, let F'_{k+1} be the fibre of s'_k and $e''_{k+1}: X \to F'_{k+1}$ lift e'_k . Define F_{k+1} as the reduced mapping cylinder of e''_{k+1} , let $e'_{k+1}: X \to F_{k+1}$ is the obvious inclusion map, and let $B_{k+1} = F_{k+1}/e'_{k+1}(X)$ and $s'_{k+1}: F_{k+1} \to F_{k+1}/e_{k+1}(X)$ the quotient map.

DEFINITION 3.1. [3] The cocategory of X, cocat X, is the least integer $k \ge 0$ for which there is a map $r: F_k \to X$ such that $r \circ e'_k \sim 1$. If there is no such integer, cocat $X = \infty$.

The following remark can easily obtained from the above definition.

REMARK 3.2. cocat $X \leq k$ if and only if $e'_k : X \to F_k$ has a left homotopy inverse.

For a map $p: X \to A$, a based map $g: X \to B$ is *p*-cocyclic [9] if there is a map $\theta: X \to A \lor B$ such that $j\theta \sim (p \times g)\Delta$, where $j: A \lor B \to A \times B$ is the inclusion and $\Delta: X \to X \times X$ is the diagonal map. The dual Gottlieb set for a map $p: X \to A$, $DG^p(X, B)$, is the set of all homotopy classes of *p*-cocyclic maps from X to B. In the case $p = 1_X: X \to X$, we call a 1-cocyclic map is just a cocyclic map, and denoted by, DG(X, B), which is the set of all homotopy classes of cocyclic maps from X to B.

In general, $DG(X, B) \subset DG^p(X, B) \subset [X, B]$ for any map $p: X \to A$ and any space B. However, there is an example in [13] such that $DG(X, B) \neq DG^p(X, B) \neq [X, B]$.

Let $g: X \to Z$ be a map. A cocategory of a map is less than equal to k, cocat $g \leq k$,[3] if there is a map $\bar{g}: F_k^X \to Z$ such that $\bar{g} \circ e_k^{'X} \sim g: X \to Z$.

DEFINITION 3.3. Let X, Z be any two spaces. The mapcocategory of mapping space from X to Z is less than equal to k, mapcocat $(X, Z) \leq k$, means that for any map $g: X \to Z$, cocat $g \leq k$.

It is clear that mapcocat $(X, Z) \leq k$ if and only if $(e_k'^X)^{\#} : [F_k^X, Z] \to [X, Z]$ is an epimorphism.

PROPOSITION 3.4. cocat $Z \leq k$ if and only if for any space X, mapcocat $(X, Z) \leq k$.

Proof. Suppose that $cocat Z \leq k$. Then there is a map $s_k^{'Z} : F_k^Z \to Z$) such that $s_k^{'Z} \circ e_k^{'Z} \sim 1$. Let X be a space and $g : X \to Z$ a map. We see $F_k(g) \circ e_k^{'X} \sim e_k^{'Z} \circ g$ by the naturality of the construction of F_k^Z as is shown in the following homotopy commutative diagram:

$$\begin{array}{cccc}
F_k^X & \xrightarrow{F_k(g)} & F_k^Z \\
 e_k'^X & e_k'^Z \\
 X & \xrightarrow{g} & Z.
\end{array}$$

Thus we have a map $\bar{g} = s_k^{Z} \circ F_k(g) : F_k^X \to Z$ such that $\bar{g} \circ e_k^{X} \sim g$. Thus we know mapcocat $(X, Z) \leq k$. On the other hand, suppose that for any space X, the mapcocategory mapcocat $(X, Z) \leq k$. Taking X = Z and $g = 1_Z$, then we know that cocat $Z \leq k$.

PROPOSITION 3.5. cocat $X \leq k$ if and only if for any space Z, mapcocat $(X, Z) \leq k$.

255

Proof. Suppose that cocat $X \leq k$. Then there is a map $s_k^{'X} : F_k^X \to X$ such that $s_k^{'X} \circ e_k^{'X} \sim 1$. Let Z be a space and $g : X \to Z$ a map. Then we have $(g \circ s_k^{'X}) \circ e_k^{'X} \sim 1_X \circ g \sim g$ and mapcat $(X, Z) \leq k$. On the other hand, suppose that for any space Z, the mapcocategory mapcocat $(X, Z) \leq k$. Taking Z = X and $g = 1_X$, then we know that cocat $X \leq k$.

It is introduced [18] that a space X is called DC_k^p -space for a map $p: X \to A$ if $e_k^{'X}: X \to F_k^X$ is p-cocyclic.

LEMMA 3.6. Let $p: X \to A$ be a map. Then $g: X \to B$ is p-cocyclic if and only if $(g)^{\#}([B,Z]) \subset DG^p(X,Z)$ for any space Z.

Proof. Suppose that $g: X \to B$ is *p*-cocyclic. Let *Z* be a space and $h: B \to Z$ a map. Since $g: X \to B$ is *p*-cocyclic, there is a map $\theta: X \to A \lor B$ such that $j\theta \sim (p \times g)\Delta$, where $j: A \lor B \to A \times B$ is the inclusion and $\Delta: X \to X \times X$ is the diagonal map. Then $\phi = (1 \lor h)\theta: X \to A \lor Z$ satisfies $j\phi \sim (p \times hg)\Delta$. Thus we have $g^{\#}([B, Z]) \subset DG^{p}(X, Z)$ for any space *Z*. On the other hand, taking Z = B and $1_{B}: B \to B \in [B, B]$. Since $g \sim g^{\#}(1_{B}) \in DG^{p}(X, B), g: X \to B$ is *p*-cocyclic.

THEOREM 3.7. [18] A space X is a DC_k^p -space for a map $p: X \to A$ if and only if $DG^p(X, Z) = [X, Z]$ for any space Z with cocat $Z \leq k$.

REMARK 3.8. If a space Z satisfy cocat $Z \leq k$, then also Z is a space with $mapcocat(Z, X) \leq k$ from Proposition 3.4.

DEFINITION 3.9. Let $p : X \to A$ be a map and Z a space with mapcocat $(X, Z) \leq k$. A space X is called a DWC_k^p -space with respect to a space Z if $(e_k^{'X})^{\#}([F_k^X, Z]) \subset DG^p(X, Z)$.

THEOREM 3.10. Let $p : X \to A$ be a map and Z a space with mapcocat $(X, Z) \leq k$. Then a space X is a DWC_k^p -space with respect to Z if and only if $DG^p(X, Z) = [X, Z]$.

Proof. Suppose that X is a DWC_k^p -space with respect to Z. Since mapcocat $(X,Z) \leq k$, $(e_k^{'X})^{\#} : [F_k^X, Z] \to [X,Z]$ is an epimorphism. Since X is a DWC_k^p -space with respect to $Z, [X,Z] = (e_k^{'X})^{\#}([F_k^X,Z]) \subset DG^p(X,Z)$ and $DG^p(X,Z) = [X,Z]$.

Conversely, assume that $DG^p(X, Z) = [X, Z]$. Thus we know $(e'^X_k)^{\#}([F^X_k, Z]) = [X, Z] \subset G^p(X, Z)$ and X is a DWC^p_k -space with respect to Z.

We have the following corollary from Theorem 3.7 and Remark 3.8.

COROLLARY 3.11. X is a DC_k^p -space if and only if for each space Z with cocat $Z \leq k, X$ is a DWC_k^p -space with respect to Z.

Let $p: X \to A$ and $q: Y \to A$ be any maps. Then it is known [18] that the relation $DG^{\nabla(p \lor q)}(X \lor Y, B) \equiv DG^p(X, B) \times DG^q(Y, B)$ holds for any space B.

THEOREM 3.12. Let $p: X \to A$ and $q: Y \to A$ be any maps and Za space with mapcocat $(X, Z) \leq k$. Then the wedge space $X \vee Y$ is a $DWC_k^{\nabla(p \vee q)}$ -space with respect to Z if and only if X is a DWC_k^p -space with respect to Z and Y is a DWC_k^q -space with respect to Z.

Proof. If $X \vee Y$ is a $DWC_k^{\nabla(p \vee q)}$ -space with respect to Z, then we know, from Theorem 3.10 and the above fact, that $DG^p(X, Z) \times DG^q(Y, Z) \equiv DG^{\nabla(p \vee q)}(X \vee Y, Z) = [X \vee Y, Z] \equiv [X, Z] \times [Y, Z]$. Then we have $DG^p(X, Z) = [X, Z]$ and $DG^q(Y, Z) = [Y, Z]$. Thus we know that X is a DWC_k^p -space with respect to Z and Y is a DWC_k^p -space with respect to Z. On the other hand, suppose that X is a DWC_k^p -space with respect to Z. Then $DG^p(X, Z) = [X, Z]$, $DG^q(Y, Z) = [Y, Z]$. Thus we know $DG^{\nabla(p \vee q)}(X \vee Y, Z) = [X, Z]$, $DG^q(Y, Z) = [Y, Z]$. Thus we know $DG^{\nabla(p \vee q)}(X \vee Y, Z) \equiv DG^p(X, Z) \times DG^q(Y, Z) = [X, Z] \times [Y, Z] \equiv [X \vee Y, Z]$. Thus $X \vee Y$ is a $DWC_k^{\nabla(p \vee q)}$ -space with respect to Z.

References

- [1] J. Aguadé, Decomposable free loop spaces, Can. J. Math. 39 (1987), 938–955.
- [2] T. Ganea, Lusternik-Schnirelmann category and cocategory, Proc. London Math. Soc. (3)10 (1960), 623-639.
- [3] T. Ganea, A generalization of the homology and homotopy suspension, Comment. Math. Helv., 39(1965), 295-322.
- [4] N. Iwase, Ganea's conjecture on Lusternik-Schnirelmann category, Bull. Lon. Math. Soc. 30 (1998), 623-634.
- [5] N. Iwase, M. Mimura, N. Oda and Y. S. Yoon, *The Milnor-Stasheff filtration on spaces and generalized cyclic maps*, Canad. Math. Bull. **55** (2012), no. 3, 523-536.
- [6] I. M. James, On category in the sense of Lusternik-Schnirelmann, Topology 17 (1978), 331-348.
- [7] K. L. Lim, Cocyclic maps and coevaluation subgroups, Canad. Math. Bull. 30 (1987), 63-71.
- [8] J. Milnor, Construction of universal bundles, I, II, Ann. Math. 63 (1956), 272–284, 430–436.
- [9] N. Oda, The homotopy of the axes of pairings, Canad. J. Math. 17 (1990), 856–868.

- [10] J. D. Stasheff, *Homotopy associativity of H-spaces I, II*, Trans. Amer. Math. Soc. **108** (1963), 275–292, 293–312.
- [11] K. Varadarajan, Genralized Gottlieb groups, J. Indian Math. Soc. **33** (1969), 141–164.
- [12] M. H. Woo and Y. S. Yoon, *T-spaces by the Gottlieb groups and duality*, J. Austral. Math. Soc. (Series A) 59 (1995), 193–203.
- [13] Y. S. Yoon, The generalized dual Gottlieb sets, Top. Appl. 109 (2001), 173-181.
- [14] Y. S. Yoon, Generalized Gottlieb groups and generalized Wang homomorphisms, Sci. Math. Japon. 55 (2002), no. 1, 139-148.
- [15] Y. S. Yoon, H^f-spaces for maps and their duals, J. Korea Soc. Math. Educ. Ser. B 14 (2007), no. 4, 289–306.
- [16] Y. S. Yoon, Lifting T-structures and their duals, J. Chungcheong Math. Soc. 20 (2007), no. 3, 245–259.
- [17] Y. S. Yoon, On cocyclic maps and cocategory, J. Chungcheong Math. Soc. 24 (2011), no. 1, 137–140.
- [18] Y. S. Yoon and H. D. Kim, Generalized dual Gottlieb sets and cocategories, J. Chungcheong Math. Soc. 25 (2012), no. 1, 135–140.

*

Department of Mathematics Education Hannam University Daejeon 306-791, Republic of Korea *E-mail*: yoon@hannam.ac.kr