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SOME APPLICATIONS OF MATHEMATICAL
RESISTANCE

Bo-Hyun Chung*

Abstract. In this paper, we introduce the mathematical resis-
tance and examine its properties and consider the applications of
mathematical resistance to conformal mappings. We obtain the
theorems in the connection with “the mathematical resistance zero”
and “the fundamental sequences”.

1. Mathematical resistance

Let D be a domain in the complex plane, {γ} a family of curves of D,
and let ρ(z) be a non-negative real-valued function defined on D. We
set

AD(ρ) = A(ρ) =
∫∫

D
ρ2(z) dxdy.

Let γ be a curve of the family {γ}. If there is countable sequence {γi}
of disjoint rectifiable arcs, which are parameterized by their arc lengths,
such that (γ) = ∪∞i (γi), we set

lρ(γ) =
∞∑

i=1

∫

γi

ρ(zi(si)) dsi.

We introduce
L(ρ) = L{γ}(ρ) = inf

γ∈{γ}
lρ(γ),

where L{γ}(ρ) = ∞, the family {γ} is empty.

Definition 1.1 ([6]). The function ρ(z) shall be called admissible
with respect to D and {γ}, if A(ρ) and L(ρ) are not both zero or both
infinite.
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Definition 1.2. The quantity

(1.1) λD(γ) = λ(γ) = sup
L2(ρ)
A(ρ)

,

where the supremum is taken over all admissible functions ρ(z), is called
the mathematical resistance of the family of curves {γ} with respect to
the domain D.

Proposition 1.3 ([7]). Let B be the interior of the annulus formed
by two concentric circles of radii a and b (a < b). The family {γ} of
curves of B which connect the two circles has mathematical resistance

(1.2) λ(γ) =
1
2π

log
b

a
,

while the family {γ∗} of simple closed curves of B which separate the
two boundary components has mathematical resistance

(1.3) λ(γ∗) =
2π

log b
a

.

The following theorem is an immediate consequence of the definition.

Theorem 1.4 ([1]). (Conformal invariance of mathematical resis-
tance) Let z∗ = f(z) be a 1-1 conformal mapping on D upon a domain
D∗ and {γ} be a family of curves in D, then

λ(γ) = λ(f(γ)).

Theorem 1.5. Let {γ} and {γ′} be two families of curves of a domain
D such that each γ ∈ {γ} contains a γ′ ∈ {γ′}. Then

λ(γ) ≥ λ(γ′).

Proof. Let ε > 0 be given and let ρ′(z) be admissible for the family
{γ′}, subject to the condition that

(1.4)
L2
{γ′}(ρ

′)

A(ρ′)
> λ(γ′)− ε.

Define a function ρ0(z) in D by

ρ0(z) =

{
ρ′(z) z belongs to some γ′

0 otherwise
.

For γ ∈ {γ}, let γ′ be one of the elements of {γ′} contained in γ. Then

(1.5) lρ0(γ) ≥ L{γ′}(ρ′),
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since either lρ0(γ) = ∞, or

lρ0(γ) =
∫

γ
ρ0 ds ≥

∫

γ′
ρ′ ds = lρ′(γ′) ≥ L{γ′}(ρ′).

For each γ ∈ {γ}, (1.5) holds, then

(1.6) L{γ}(ρ0) ≥ L{γ′}(ρ′).

Also, we have

(1.7) A(ρ0) ≤ A(ρ′).

Show that ρ0 is admissible for the family {γ}. If λ(γ′) = 0, the theorem
holds trivially. Assume that A(ρ′) < ∞, and A(ρ0) < ∞.

If A(ρ0) = 0, then either (i) A(ρ′) = 0, or (ii) A(ρ′) > 0. In case (i),
L{γ′}(ρ′) > 0, since ρ′ is admissible for {γ′}, while in case (ii), we choose
ε so that 0 < ε < λ(γ′) in (1.4), and we conclude from that formula that
L{γ′}(ρ′) > 0. In either case, therefore, A(ρ0) = 0 implies, by (1.6), that
L{γ}(ρ0) > 0; hence, ρ0 is admissible for {γ}. By (1.6) and (1.7), we
obtain

L2
{γ}(ρ0)

A(ρ0)
≥

L2
{γ}(ρ

′)

A(ρ′)
,

and therefore, by (1.4), λ(γ) > λ(γ′)− ε, then

λ(γ) ≥ λ(γ′).

This completes the proof of the theorem.

Corollary 1.6. In particular, if {γ} is contained in {γ′}, then

λ(γ) ≥ λ(γ′).

2. Some applications of mathematical resistance

An important application of mathematical resistance is to the bound-
ary correspondence between two simply connected domains which are
mapped conformally on each other.

Throughout this section, D is a domain in the complex plane.

Definition 2.1 ([3]). A crosscut of D is a Jordan curve γ in D which
in both directions tends to a boundary point.

It is well known that D− γ consists of two simply connected compo-
nents.
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Definition 2.2 ([4]). Choose a fixed z0 ∈ D and consider sequences
P = {pn} of points in D. With the sequence P , we associate the family
Γp of all clusters of crosscuts of D which separate z0 from almost all pn.
The sequence P is said to be fundamental if λ(Γp) = 0.

The definition is independent of the choice of z0.

Recall that λ(Γp) = 0 if and only if L(ρ) = 0 for all ρ with A(ρ) < ∞.

Lemma 2.3 ([5]). Let D and D∗ be simply connected domains in the
complex plane, and consider sequence P = {pn} of points in D. Let f
be a conformal mapping from D to D∗. Then the sequences {pn} and
{f(pn)} are simultaneously fundamental.

Lemma 2.4. Let P = {pn} be a fundamental sequence in D. Then
all accumulation points of the P = {pn} lie on the boundary of D.

Proof. Let α ∈ D be an accumulation point of P . Then α 6∈ E,
since otherwise {γ} would be empty, and λ(γ) = ∞, where E is the
set of z0 in definition 2.2. Therefore, the open set D − E contains a
closed disk F with center α such that pn ∈ F for an infinite number of
indices. If ξ is a curve contained in D which connects α to a point β
of E, then every crosscut γ of the family {γ} intersects the continuum
T = ξ ∪ F . T has positive spherical distance δ from the boundary. Let
ρ∗(z) = ψ(z,∞), where ψ(z, w) is the spherical distance. Then, for each
γ ∈ {γ}, lρ∗(γ) ≥ 2δ. Hence L{γ}(ρ∗) ≥ 2δ. Since 0 < A(ρ∗) < π, ρ∗ is
admissible. We have

λ(γ) ≥ L2(ρ∗)
A(ρ∗)

≥ 4
π
· δ2 > 0.

This contradiction shows that α cannot be an interior point of D. This
completes the proof.

Lemma 2.5. A sequence P = {pn} of points of ∆ = {z||z| < 1} is a
fundamental if and only if it converges to a point ζ = eiθ of the boundary
of ∆.

Proof. Let limn→∞ pn = ζ, and set rj = |pj−ζ|, Cj = {z||z−ζ| = rj}.
Then the sequence {rj} converges to 0. By restriction to a suitable
subsequence of {pn}, we assume that C1 separates Cn, (n > 1) from z0.
Let {γ} be the family of crosscuts of ∆ which separate z0 from almost
all pn. For j, every simple closed curve, which separates the C0 and
Cj , contains a crosscut which separates z0 from almost all pn and which
belongs to the family {γ}. Let {δk} be the family of all such simple
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closed curves by Proposition 1.3 and Theorem 1.5, we have

λ(γ) ≤ λ(δk) =
2π

log r0
rk

.

The right side converses to zero as k → ∞, and the result, λ(γ) = 0.
Thus, P = {pn} is a fundamental sequence in D.

On the other hand, if ζ1 = eiθ1 and ζ2 = eiθ2 are distinct points of
the boundary. Let {pm} and {qn} be sequences converging to ζ1 and ζ2,
respectively. Let z0 = 0. Each member of the family {γ} of crosscuts
of ∆ which separate z0 from almost all points of the join of our two
sequences have Euclidean length at least |ζ1 − ζ2|. Denoting by ρ0 the
function ρ0(z) = 1 for all z of ∆, we have L{γ}(ρ0) ≥ |ζ1 − ζ2|, while
A(ρ0) = π; hence,

λ(γ) ≥ 1
π
|ζ1 − ζ2|2 > 0.

A sequence of points of ∆ with more than one accumulation point on
the boundary cannot be a fundamental sequence. This completes the
proof.

Theorem 2.6. Let D be a Jordan domain in the complex plane, and
let w = f(z) be a conformal mapping on ∆ = {z||z| < 1} upon D. Let
w0 be a point on the boundary of D, and consider a sequence P = {wn}
of points of D converging to w0. Let f−1(P ) = {zn} be a inverse image
of P . Then the sequence of points {zn} has no point of accumulation in
the interior of ∆, and {zn} has one and only one point of accumulation
z0 on the boundary of ∆.

Proof. Since w0 is a point on the boundary of D, P = {wn} is a
fundamental by Lemma 2.4. Thus, {zn} is a fundamental by Lemma 2.3.
Therefore, point of accumulation z0 of {zn} exist on the boundary of ∆,
by Lemma 2.4.

On the other hand, z0 is one and only one point of accumulation by
Lemma 2.5. This completes the proof of the theorem.
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