A NOTE ON EULERIAN POLYNOMIALS OF HIGHER ORDER

Jongsung Chor*

Abstract

In this paper we derive some identities on Eulerian polynomials of higher order from non-linear ordinary differential equations. We show that the generating functions of Eulerian polynomials are solutions of our non-linear ordinary differential equations.

1. Introduction

It is well known that the generating function $F(t, x)$ of Euler polynomials $E_{n}(x)$ is given by

$$
\begin{equation*}
F(t, x)=\frac{2}{e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!} \tag{1.1}
\end{equation*}
$$

In the special case, $x=0, E_{n}(0)=E_{n}$ is the n-th Euler number.
From (1.1), we note that

$$
\begin{equation*}
E_{0}=1, \quad(E+1)^{n}+E_{n}=0, \quad \text { if } n>0 \tag{1.2}
\end{equation*}
$$

with the usual convention of replacing E^{n} by E_{n}. The generating function $F_{u}(t, x)$ of Eulerian polynomials $H_{n}(x \mid u)$ are defined by

$$
\begin{equation*}
F_{u}(t, x)=\frac{1-u}{e^{t}-u} e^{x t}=\sum_{n=0}^{\infty} H_{n}(x \mid u) \frac{t^{n}}{n!}, \tag{1.3}
\end{equation*}
$$

where $u \in \mathbb{C}$ with $u \neq 1$ (see $[1,2]$). In the special case, $x=0, H_{n}(0 \mid u)=$ $H_{n}(u)$ is called the n-th Eulerian number (see [2]). Sometimes that is called the n-th Frobenius-Euler number (see [3-7]).
From (1.1) and (1.3), we note that $H_{n}(x \mid-1)=E_{n}(x)$.
Received November 28, 2012; Accepted January 11, 2013.
2010 Mathematics Subject Classification: Primary 11B68; Secondary 34A34.
Key words and phrases: Eulerian numbers and polynomials.
The present Reserch has been conducted by the Reserch Grant of Kwangwoon University in 2012.

By (1.3), we get

$$
\begin{align*}
\frac{1-u}{e^{t}-u} e^{x t} & =\left(\sum_{l=0}^{\infty} H_{l}(u) \frac{t^{l}}{l!}\right)\left(\sum_{k=0}^{\infty} \frac{x^{k} t^{k}}{k!}\right) \tag{1.4}\\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\binom{n}{l} x^{n-l} H_{l}(u)\right) \frac{t^{n}}{n!} .
\end{align*}
$$

From (1.3) and (1.4), we get

$$
\begin{equation*}
H_{n}(x \mid u)=\sum_{l=0}^{n}\binom{n}{l} x^{n-l} H_{l}(u)=(H(u)+x)^{n} \tag{1.5}
\end{equation*}
$$

with the usual convention of replacing $H^{n}(u)$ by $H_{n}(u)$.
By (1.5), we obtain

$$
\begin{align*}
1-u & =\frac{1-u}{e^{t}-u} e^{t}-\frac{1-u}{e^{t}-u} u \\
& =\sum_{n=0}^{\infty}(H(u)+1)^{n} \frac{t^{n}}{n!}-\sum_{n=0}^{\infty} u H_{n}(u) \frac{t^{n}}{n!} \tag{1.6}
\end{align*}
$$

Thus, we get the recurrence relation for $H_{n}(u)$ as follows:

$$
\begin{equation*}
H_{0}(u)=1, \quad H_{n}(1 \mid u)-u H_{n}(u)=(1-u) \delta_{0, n} \tag{1.7}
\end{equation*}
$$

where $\delta_{n, k}$ is Kronecker symbol (see [1-7]).
For $N \in \mathbb{N}$, the n-th Eulerian polynomials $H_{n}^{(N)}(x \mid u)$ of order N are defined by generating function as follows:

$$
\begin{align*}
F_{u}^{N}(t, x) & =\underbrace{\left(\frac{1-u}{e^{t}-u}\right) \times\left(\frac{1-u}{e^{t}-u}\right) \times \cdots \times\left(\frac{1-u}{e^{t}-u}\right)}_{N-\text { times }} e^{x t} \tag{1.8}\\
& =\sum_{n=0}^{\infty} H_{n}^{(N)}(x \mid u) \frac{t^{n}}{n!}
\end{align*}
$$

In the special case, $x=0, H_{n}^{(N)}(0 \mid u)=H_{n}^{(N)}(u)$ are called the n-th Eulerian numbers of order N (see [1-7]).

In [6], T. Kim introduced important ideas to obtain some new identities between the sums of products of Frobenius-Euler polynomials and Frobenius-Euler polynomials of higher order. The main idea is to construct non-linear ordinary differential equations with respect to t which are closely related to the generating functions of Frobenius-Euler polynomials.

In this paper, we consider non-linear ordinary differential equations with respect to u not t. The purpose of this paper is to give some new identities on the Eulerian polynomials of higher order by using the non-linear ordinary differential equations with respect to u.

2. Constuction of non-linear differential equations

We define that

$$
\begin{align*}
F & =F(u)=\frac{1-u}{e^{t}-u} \quad \text { and } \\
F^{N}(t, x) & =\underbrace{F \times \cdots \times F}_{N-\text { times }} e^{x t} \quad \text { for } N \in \mathbb{N} . \tag{2.1}
\end{align*}
$$

We note that $F(t, x)=F_{u}(t, x)=F e^{x t}$.
By (2.1), we get

$$
\begin{align*}
F^{(1)}=\frac{d F}{d u} & =-\frac{1}{1-u} \frac{1-u}{e^{t}-u}+\frac{1}{1-u}\left(\frac{1-u}{e^{t}-u}\right)^{2} \tag{2.2}\\
& =-\frac{1}{1-u}\left(F-F^{2}\right) .
\end{align*}
$$

By (2.2), we obtain

$$
\begin{align*}
& F^{(1)}(t, x)=F^{(1)} e^{x t}=-\frac{1}{1-u}\left(F(t, x)-F^{2}(t, x)\right), \tag{2.3}\\
&(1-u) F^{(1)}+F=F^{2} .
\end{align*}
$$

Theorem 2.1. For $u \in \mathbb{C}$ with $u \neq 1, N \in \mathbb{N}$, $F(u)=\frac{1-u}{e^{t}-u}$ is a solution of

$$
\begin{equation*}
F^{N}(u)=\sum_{k=0}^{N-1} \frac{1}{k!}(1-u)^{k} F^{(k)}(u), \tag{2.4}
\end{equation*}
$$

where $F^{(k)}(u)=\frac{d^{k} F(u)}{d u^{k}}$ and $F^{N}(u)=\underbrace{F(u) \times \cdots \times F(u)}_{N-\text { times }}$.
Proof. (Mathematical Induction)
(i) If $N=1$, then it is obvious.
(ii) Assume that (2.4) is true for some $N>1$. Let us consider the derivative of (2.4).

$$
\begin{align*}
N F^{N-1} F^{(1)} & =\sum_{k=0}^{N-1} \frac{1}{k!}\left(-k(1-u)^{k-1} F^{(k)}+(1-u)^{k} F^{(k+1)}\right) \tag{2.5}\\
& =\frac{1}{(N-1)!}(1-u)^{N-1} F^{(N)}
\end{align*}
$$

Thus, from (2.3) and (2.5), we have

$$
\begin{equation*}
\frac{1}{N!}(1-u)^{N} F^{(N)}=F^{N-1}(1-u) F^{(1)}=F^{N-1}\left(-F+F^{2}\right) \tag{2.6}
\end{equation*}
$$

By (2.5) and (2.6), we get

$$
F^{N+1}=F^{N}+\frac{1}{N!}(1-u)^{N} F^{(N)}=\sum_{k=0}^{N} \frac{1}{k!}(1-u)^{k} F^{(k)} .
$$

Corollary 2.2. For $u \in \mathbb{C}$ with $u \neq 1, N \in \mathbb{N}$,
$F(t, x)=\frac{1-u}{e^{t}-u} e^{x t}$ is a solution of

$$
\begin{equation*}
F^{N}(t, x)=\sum_{k=0}^{N-1} \frac{1}{k!}(1-u)^{k} F^{(k)}(t, x) \tag{2.7}
\end{equation*}
$$

Proof. It is proved from the facts $F^{N}(t, x)=F^{N}(u) e^{x t}$ and $F^{(k)}(t, x)=$ $\frac{d^{k} F(u)}{d u^{k}} e^{x t}$.

3. Identities on the Eulerian numbers and polynomials of higher order

Theorem 3.1. For $N \in \mathbb{N}, n \in \mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$, we have

$$
H_{n}^{(N)}(u)=\sum_{k=0}^{N-1} \frac{1}{k!}(1-u)^{k} \frac{d^{k} H_{n}(u)}{d u^{k}}
$$

Proof. By (1.8) and (2.1), we get

$$
\begin{equation*}
F^{N}=\underbrace{\frac{1-u}{e^{t}-u} \times \cdots \times \frac{1-u}{e^{t}-u}}_{N-\text { times }}=\sum_{n=0}^{\infty} H_{n}^{(N)}(u) \frac{t^{n}}{n!} \tag{3.1}
\end{equation*}
$$

From (1.3) and (2.1), we get

$$
\begin{equation*}
F^{(k)}=\frac{d^{k} F(u)}{d u^{k}}=\sum_{n=0}^{\infty} \frac{d^{k} H_{n}(u)}{d u^{k}} \frac{t^{n}}{n!} \tag{3.2}
\end{equation*}
$$

By (2.7) and comparing with coefficients of (3.1) and (3.2), we obtain the result of this theorem.

Corollary 3.2. For $N \in \mathbb{N}$, $n \in \mathbb{Z}_{+}$, we have

$$
\begin{aligned}
& \sum_{l_{1}+\cdots+l_{N}=n}\binom{n}{l_{1}, \cdots, l_{N}} H_{l_{1}}(u) H_{l_{2}}(u) \cdots H_{l_{N}}(u) \\
& \quad=\sum_{k=0}^{N-1} \frac{1}{k!}(1-u)^{k} \frac{d^{k} H_{n}(u)}{d u^{k}}
\end{aligned}
$$

Proof. From (3.1), we obtain

$$
\left.\begin{array}{l}
\sum_{n=0}^{\infty} H_{n}^{(N)}(u) \frac{t^{n}}{n!}=\underbrace{\frac{1-u}{e^{t}-u} \times \cdots \times \frac{1-u}{e^{t}-u}}_{N-\text { times }} \\
=\left(\sum_{l_{1}=0}^{\infty} H_{l_{1}}(u) \frac{t^{l_{1}}}{l_{1}!}\right) \times \cdots \times\left(\sum_{l_{N}=0}^{\infty} H_{l_{N}}(u) \frac{t^{l_{N}}}{l_{N}!}\right. \tag{3.3}
\end{array}\right) .
$$

Therefore, by Theorem 3.1 and (3.3), it is proved.
Corollary 3.3. For $N \in \mathbb{N}$, $n \in \mathbb{Z}_{+}$, we have

$$
H_{n}^{(N)}(x \mid u)=\sum_{k=0}^{N-1} \frac{1}{k!}(1-u)^{k} \sum_{l=0}^{n}\binom{n}{l} x^{n-l} \frac{d^{k} H_{n}(u)}{d u^{k}}
$$

Proof. From (1.4) and (3.2), we get

$$
\begin{align*}
F^{(k)}(t, x) & =F^{(k)} e^{x t} \\
& =\left(\sum_{n=0}^{\infty} \frac{d^{k} H_{n}(u)}{d u^{k}} \frac{t^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} \frac{x^{n} t^{n}}{n!}\right) \tag{3.4}\\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\binom{n}{l} x^{n-l} \frac{d^{k} H_{l}(u)}{d u^{k}}\right) \frac{t^{n}}{n!} .
\end{align*}
$$

Therefore, by (1.8), (2.7) and (3.4), it is proved.

References

[1] L. Carlitz, Eulerian numbers and polynomials, Math. Mag. 23 (1959), 247-260.
[2] L. Carlitz, The product of two Eulerian polynomials, Math. Mag. 36 (1963), 37-41.
[3] J. Choi, D. S. Kim, T. Kim, Y. H. Kim, A note on some identities of FrobeniusEuler numbers and polynomials, Int. J. of Math. and Math. Sci., Article ID 861797 (2012), 9 pages.
[4] J. Choi, T. Kim, Y. H. Kim, A note on the q-analogue of Euler numbers and polynomials, Honam Math. J. 33 (2011), no. 4, 529-534.
[5] J. Choi, T. Kim, Y. H. Kim, B. Lee, On the (w,q)-Euler numbers and polynomials with weight α, Proc. Jongjeon Math. Soc. 15 (2012), no. 1, 91-100.
[6] T. Kim, Identities involving Frobenius-Euler polynomials arising from nonlinear differential equations, J. of Number Theory 132 (2012), 2854-2865.
[7] T. Kim, J. Choi, A note on the product of Frobenius-Euler polynomials arising from the p-adic integral on \mathbb{Z}_{p}, Adv. Studies Contemp. Math. 22 (2012), no. 2, 215-223.

*

Division of General Education-Mathematics
Kwangwoon University
Seoul 139-701, Republic of Korea
E-mail: jeschoi@kw.ac.kr

