ON LINEAR BCI-ALGEBRAS

Young Hee Kim* and Keum Sook So**

> Abstract. In this note, we show that every linear $B C I$-algebra $(X ; *, e), e \in X$, has of the form $x * y=x-y+e$ where $x, y \in X$, where X is a field with $|X| \geq 3$.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$-algebras and $B C I$-algebras ($[3,4]$). It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. In [1, 2] Q. P. Hu and X. Li introduced a wide class of abstract algebras: $B C H$-algebras. They have shown that the class of $B C I$-algebras is a proper subclass of the class of $B C H$-algebras. J. Neggers and H. S. Kim introduced the notion of B-algebras ([8, 9]), i.e., (I) $x * x=e$; (II) $x * e=x$; (III) $(x * y) * z=x *(z *(e * y))$, for any $x, y, z \in X$. C. B. Kim and H. S. Kim ([5]) introduced the notion of a $B G$-algebras which is a generalization of B -algebras, and constructed a $B G$-algebra from a non-empty set, which is non-group-derived. A. Walendziak ([12]) introduced a new notion, called an $B F$-algebra, i.e., (I); (II) and (IV) $e *(x * y)=y * x$ for any $x, y \in X$. In ([12]) it was shown that a $B F$ algebra is a generalizations of B-algebras. In this note, we show that every linear BCI-algebra ($X ; *, e$), $e \in X$, has of the form $x * y=x-y+e$ where $x, y \in X$, where X is a field with $|X| \geq 3$. Moreover, it is shown that every linear $B C I$-algebra is equivalent to quadratic $B F(B, B G$, Q)-algebras.

[^0]
2. Preliminaries

Definition 2.1. A $B C I$-algebra is an algebra $(X ; *, e)$ of type $(2,0)$ satisfying the following axioms:
(I) $x * x=e$,
(II) $x * y=y * x=e$ implies $x=y$,
(III) $(x *(x * y)) * y=e$,
(IV) $((x * y) *(x * z)) *(z * y)=e$ for any $x, y, z \in X$.

A $B C K$-algebra is a $B C I$-algebra satisfying the following axiom:
(V) $e * x=e$ for any $x \in X$.

A BF-algebra ([12]) is an algebra $(X ; *, e)$ of type $(2,0)$ satisfying the following axioms (I), and
(B2) $x * e=x$,
(BF) $e *(x * y)=y * x$ for any $x, y \in X$.
Note that $B F$-algebras need not be $B C I$-algebras, since it does not satisfy the anti-symmetry condition. The following example shows a $B F$-algebra which is not a $B C I$-algebra.

Example 2.2. ([12]) Let $(X ; *, 0)$ be the algebra where X is the set of all real numbers and $*$ is defined by

$$
x * y= \begin{cases}x & \text { if } y=0 \\ y & \text { if } x=0 \\ 0 & \text { otherwise }\end{cases}
$$

Then X is a $B F$-algebra, but not a $B C I$-algebra, since $3 * 4=0=4 * 3$, but $3 \neq 4$.

3. Constructions of linear $B C I$-algebras

Let X be a field with $|X| \geq 3$. An algebra $(X ; *)$ is said to be linear if $x * y$ is defined by $x * y=A x+B y+C$ where $A, B, C \in X$, for any $x, y \in X$. A linear algebra $(X ; *)$ is said to be a linear BCI-algebra if it satisfies the conditions (I) $\sim(I V)$.

Theorem 3.1. Let X be a field with $|X| \geq 3$. Then every linear $B C I$-algebra $(X ; *, e), e \in X$, has of the form $x * y=x-y+e$ where $x, y \in X$.

Proof. Define $x * y:=A x+B y+C$ where $A, B, C \in X$ for any $x, y \in X$. If we consider (I), then $e=x * x=(A+B) x+C$ for any $x \in X$. Assume $A+B \neq 0$. Then $x=\frac{e-C}{A+B}$ for any $x \in X$, a contradiction. Hence $A+B=0$ and $C=e$. Hence

$$
\begin{equation*}
x * y=A(x-y)+e \tag{3.1}
\end{equation*}
$$

Consider (II). Suppose $x * y=0=y * x$. Then by applying (1), we obtain

$$
A(x-y)+e=e=A(y-x)+e
$$

Hence $A(x-y)=0=A(y-x)$. If we assume that $A \neq 0$, then $x=y$. This means that the necessary condition to hold (III) is that $A \neq 0$.

Consider (IV). Given $x, y \in X$,

$$
\begin{aligned}
e & =(x *(x * y)) * y \\
& =A(x *(x * y))+B y+C \\
& =A^{2}(1+B) x+B(A B+1) y+C(A B+A+1)
\end{aligned}
$$

It follows that $A^{2}(1+B)=0, B(A B+1)=0, C(A B+A+1)=e$.
Case 1: $B=0$. Since $A^{2}(1+B)=0, A^{2}=0$ and hence $A=0$, a contradiction.

Case 2: $B \neq 0$. Since $B(A B+1)=0, C(A B+A+1)=e$, we obtain $A B+1=0, C A=e$, i.e., $A=-\frac{1}{B}$ and $C=-B e$. Hence

$$
\begin{equation*}
x * y=-\frac{1}{B} x+B y-B e \tag{3.2}
\end{equation*}
$$

Subcase (2.1): $C \neq 0$, i.e., $e \neq 0$. For any $x \in X$,

$$
\begin{aligned}
e & =x * x \\
& =-\frac{1}{B} x+B x-B e \\
& =\left(-\frac{1}{B}+B\right) x-B e
\end{aligned}
$$

It follows that $B=-1, A=1$ and $C=e$. Hence $x * y=x-y+e$. Subcase (2.2): $C=0$, i.e., $e=0$. By (2), we have $x * y=-\frac{1}{B} x+B y$. If we let $y:=x$, then $0=e=x * x=\left(B-\frac{1}{B}\right) x$ for any $x \in X$. It follows that $B= \pm 1$. Since $A^{2}(B+1)=0$, we have $B=-1$. In fact, if $B=1$, then $0=A^{2}(1+B)=2 A^{2}$, a contradiction, since $A \neq 0$. Thus $x * y=x-y=x-y+0$, proving the theorem.

Example 3.2. Let \mathbf{R} be the set of all real numbers. Then $(\mathbf{R}, *, 0)$ is a linear $B C I$-algebra where $x * y:=x-y$, for any $x, y \in \mathbf{R}$.

Proposition 3.3. Let X be a field with $|X| \geq 3$. If X is a linear $B C I$-algebra, then $(x * z) *(y * z)=x * y$ for any $x, y, z \in X$.

Proof. Straightforward.
Let X be a field with $|X| \geq 3$. An algebra $(X ; *)$ is said to be quadratic if $x * y$ is defined by $x * y=a_{1} x^{2}+a_{2} x y+a_{3} y^{2}+a_{4} x+a_{5} y+a_{6}$, where $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6} \in X$, for any $x, y \in X$. A quadratic algebra $(X ; *)$ is said to be a quadratic $B F$-algebra if it satisfies the condition (I), (B2) and (BF).

Theorem 3.4. ([7]) Let X be a field with $|X| \geq 3$. Then every quadratic BF-algebra $(X ; *, e), e \in X$, has of the form $x * y=x-y+e$ where $x, y \in X$.
H. K. Park and H. S. Kim ([11]) proved that every quadratic Balgebra $(X ; *, e), e \in X$, has of the form $x * y=x-y+e$, where X is a field with $|X| \geq 3$. J. Neggers, S. S. Ahn and H. S. Kim ([10]) introduced the notions of Q-algebra, and obtained that every quadratic Q-algebra $(X ; *, e), e \in X$, has of the form $x * y=x-y+e, x, y \in X$, where X is a field with $|X| \geq 3$. Also, H. S. Kim and H. D. Lee ([6]) showed that every quadratic $B G$-algebra $(X ; *, e), e \in X$, has of the form $x * y=x-y+e, x, y \in X$, where X is a field with $|X| \geq 3$. We summarize:

Theorem 3.5. Let X be a field with $|X| \geq 3$. Then the followings are equivalent :
(1) $(X ; *, e)$ is a quadratic $B F$-algebra,
(2) $(X ; *, e)$ is a quadratic $B G$-algebra,
(3) $(X ; *, e)$ is a quadratic Q-algebra,
(4) $(X ; *, e)$ is a quadratic B-algebra.

Theorem 3.6. ([11]) Let X be a field with $|X| \geq 3$. Then every quadratic B-algebra on X is a $B C I$-algebra.

From Theorem 3.4 and Theorem 3.6, we obtain the following.
Corollary 3.7. Let X be a field with $|X| \geq 3$. Then every quadratic $B F(B G, Q, B)$-algebra on X is a linear $B C I$-algebra and vice versa.

Acknowledgements

The authors are grateful for the referee's valuable suggestions and help.

References

[1] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313320.
[2] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
[3] K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
[4] K. Iséki, On BCI-algebras, Math. Sem. Notes 8 (1980), 125-130.
[5] C. B. Kim and H. S. Kim, On BG-algebras, Demonstratio Math. 41 (2008), 497-505.
[6] H. S. Kim and H. D. Lee, On quadratic BG-algebras, Int. Math. J. 5 (2004), 529-535.
[7] H. S. Kim and N. R. Kye, On quadratic BF-algebras, Sci. Math. Japo. 65 (2007), 287-290.
[8] J. Neggers and H. S. Kim, On B-algebras, Math.Vesnik 54 (2002), 21-29.
[9] J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Int. Math. J. 2 (2002), 207-214.
[10] J. Neggers, S. S. Ahn and H. S. Kim, On Q-algebras, Int. J. Math Math. Sci. 27 (2001), 749-757.
[11] H. K. Park and H. S. Kim, On quadratic B-algebras, Quasiproups and Related Systems 8 (2001), 67-72.
[12] A. Walendziak, On BF-algebras, Math. Slovaca 57 (2007), 119-128.
*
Department of Mathematics
Chungbuk National University
Chongju 361-791, Republic of Korea
E-mail: yhkim@chungbuk.ac.kr
**
Department of Mathematics
Hallym University
Chuncheon 200-702, Republic of Korea
E-mail: ksso@hallym.ac.kr

[^0]: Received November 02, 2012; Accepted January 11, 2013.
 2010 Mathematics Subject Classification: Primary 06F35.
 Key words and phrases: $B C I$-algebra, $B F$-algebra, linear, quadratic.
 Correspondence should be addressed to Keum Sook So, ksso@hallym.ac.kr.

