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A SOLUTION OF EINSTEIN’S FIELD EQUATIONS FOR
THE THIRD CLASS IN X4

Jong Woo Lee*

Abstract. The main goal in the present paper is to obtain a so-
lution of Einstein’s unified field equations for the third class in X4.

1. Introduction

Einstein([1]) proposed a new unified field theory that would include
both gravitation and electromagnetism. Hlavatý([5]) gave the mathe-
matical foundation of the Einstein’s unified field theory in a 4-dimensional
generalized Riemannian space X4 (i.e., space-time) for the first time.
Since then this theory had been generalized in a generalized Riemannian
manifold Xn, the so-called Einstein’s n-dimensional unified field theory,
and many consequences of this theory has been obtained by a number
of mathematicians. However, it has been unable yet to represent a gen-
eral n-dimensional Einstein’s connection in a surveyable tensorial form,
probably due to the complexity of the higher dimensions. The purpose
of the present paper is to obtain a necessary and sufficient condition for
a connection with a new torsion tensor be an Einstein’s connection in
Xn. In the next, we obtain a solution of Einstein’s field equations for the
third class in X4. The obtained results and discussions in the present
paper will be useful for the 4-dimensional considerations of the unified
field theory.

2. Preliminary

Let Xn be an n-dimensional generalized Riemannian manifold covered
by a system of real coordinate neighborhoods {U; xν}, where, here and
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in the sequel, Greek indices run over the range {1, 2, · · · , n} and follow
the summation convention. The algebraic structure on Xn is imposed
by a basic real non-symmetric tensor gλµ, which may be split into its
symmetric part hλµ and skew-symmetric part kλµ:

(2.1) gλµ = hλµ + kλµ,

where we assume that

(2.2) (a) G = det((gλµ)) 6= 0, (b) H = det((hλµ)) 6= 0.

Since det((hλµ)) 6= 0, we may define a unique tensor hλν(= hνλ) by

(2.3) hλµhλν = δν
µ.

We use the tensors hλν and hλµ as tensors for raising and/or lowering
indices for all tensors defined on Xn in the usual manner. Then we may
define new tensors by

(2.4) (a) kα
µ = kλµhλα, (b) kλ

α = kλµhµα, (c) kαβ = kλµhλαhµβ.

The manifold Xn is assumed to be connected by a general real connection
Γν

λµ which may also be split into its symmetric part Λν
λµ and skew-

symmetric part Sλµ
ν , called the torsion tensor of Γν

λµ :

(a) Λν
λµ = Γν

(λµ) =
1
2
(Γν

λµ + Γν
µλ),

(b) Sλµ
ν = Γν

[λµ] =
1
2
(Γν

λµ − Γν
µλ).

(2.5)

The Einstein’s n-dimensional unified field theory in Xn is governed
by the following set of equations :

(2.6) ∂ωgλµ − gαµΓα
λω − gλαΓα

ωµ = 0 (∂ν =
∂

∂xν
),

and

(2.7) (a) Sλ = Sλα
α = 0, (b) R[λµ] = ∂[λPµ], (c) R(λµ) = 0,

where Pµ is an arbitrary vector, called the Einstein’s vector, and Rλµ is
the contracted curvature tensor Rα

λµα of the curvature tensor Rω
λµν :

(2.8) Rω
λµν = ∂µΓω

λν − ∂νΓω
λµ + Γα

λνΓ
ω
αµ − Γα

λµΓω
αν .

The equation (2.6) is called the Einstein’s equation, and the solution Γν
λµ

of the Einstein’s equation is called an Einstein’s connection. And the
vector Sλ, defined by (2.7)(a), is called the torsion vector.
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3. An Einstein’s connection in Xn

The following theorem was proved by Hlavatý([5]).

Theorem 3.1. In Xn, if the Einstein’s equation (2.6) admits a solu-
tion Γν

λµ, then this solution must be of the form

(3.1) Γν
λµ = {λ

ν
µ}+ 2hναSα(λ

βkµ)β + Sλµ
ν ,

where {λ
ν
µ} are the Christoffel symbols defined by hλµ.

Remark 3.2. In virtue of Theorem 3.1, the equation (3.1) reduces
the investigation of Γν

λµ to the study of its torsion tensor Sλµ
ν . Hence in

order to know an Einstein’s connection Γν
λµ, it is necessary and sufficient

to know its torsion tensor Sλµ
ν . For this, we introduce a new torsion

tensor Sλµ
ν given by

(3.2) Sλµ
ν = 2δν

[λkµ]αY α + kλµY ν ,

for some nonzero vector Yλ.

Theorem 3.3. In Xn, if the connection (3.1) is a connection such
that its torsion tensor is of the form (3.2) for some nonzero vector Yλ,
then the connection is given by

(3.3) Γν
λµ = {λ

ν
µ}+ 2δν

[λkµ]αY α + kλµY ν .

Proof. Since the torsion tensor of the connection (3.1) is of the form
(3.2), we obtain

(3.4) 2hναSα(λ
βkµ)β = 0

by a straightforward computation. Substituting (3.2) and (3.4) into
(3.1), we obtain (3.3).

Theorem 3.4. In Xn, the connection (3.3) is an Einstein’s connection
if and only if the vector Yλ defining (3.3) satisfies the following condition

(3.5) ∇ν kλµ = 2hν[λkµ]αY α − 2kν[λ Yµ],

where ∇ω is the symbolic vector of the covariant derivative with respect
to {λ

ν
µ}.

Proof. The connection (3.3) is an Einstein’s connection if and only if
the connection (3.3) satisfies the Einstein’s equation (2.6). Substituting
(2.1) and (3.3) into (2.6), and making use of ∇ν hλµ = 0, we obtain

(3.6) ∇ν kλµ − 2hν[λkµ]αY α + 2kν[λ Yµ] = 0
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by a straightforward computation. Hence the connection (3.3) is an
Einstein’s connection if and only if the vector Yλ defining (3.3) satisfies
the condition (3.5).

Theorem 3.5. In Xn, if the connection (3.3) is an Einstein’s connec-
tion, then its torsion vector satisfies the following relation :

(3.7) Sλ = ∇αkλ
α

Proof. Contracting for (3.2) for µ and ν, we obtain

(3.8) Sλ = Sλα
α = (2− n)kλαY α.

Next, multiplying hµα on both sides of (3.5), and contracting for ν and
α, we obtain

(3.9) ∇αkλ
α = (2− n)kλαY α.

The results (3.8) and (3.9) imply the relation (3.7).

4. A solution of field equations for the third class in X4

In this section we shall display a solution for the third class of (2.6)
and (2.7) in X4. Assume hλµ to be of the form

(4.1) ((hλµ)) =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 .

Define two vectors by

(4.2) (a) Aλ : (0, 0, 1,−1), (b) Bλ : (φ, ψ, 0, 0),

where φ = φ(x1, x2, x3, x4) and ψ = ψ(x1, x2, x3, x4) are nonzero real-
valued functions to be determined. Now, we define a basic tensor gλµ in
X4 by

(4.3) gλµ = hλµ + kλµ,

where hλµ is defined by (4.1), and kλµ is defined by

(4.4) kλµ = 2A[λBµ],

that is,

(4.5) ((kλµ)) =




0 0 −φ φ
0 0 −ψ ψ
φ ψ 0 0
−φ −ψ 0 0


 ,
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which is obviously of the third class :

(4.6) (a) Det(kλµ) = 0, (b) K(=
1
4
kαβkαβ) = 0.

Then all the Christoffel symbols {λ
ν
µ} vanish. Hence the components of

the first covariant derivatives with respect to {λ
ν
µ} are ordinary deriva-

tives, and Hω
λµν = 0. Furthermore,

(4.7) (a) Aλ(= hλνAν) : (0, 0, 1, 1), (b) Bλ(= hλνBν) : (φ, ψ, 0, 0)

(4.8) (a) AαAα = AαBα = 0, (b) kλαAα = 0, (c) ∂λAµ = 0.

The following theorem is immediate consequences of Theorem 3.3 and
Theorem 3.4, in virtue of (2.7)(a), (3.8), and (4.3).

Theorem 4.1. In X4, for the basic tensor gλµ given by (4.3), the
connection (3.3) is given by

(4.9) Γν
λµ = 2δν

[λkµ]αY α + kλµY ν ,

and this connection (4.9) is a solution of (2.6) and (2.7)(a) if and only
if the vector Y ν defining (4.9) satisfies the following conditions

(4.10) (a) kµαY α = 0, (b) ∂ν kλµ = −2kν[λ Yµ].

If these conditions (4.10) are satisfied, then the connection (4.9) is given
by

(4.11) Γν
λµ = kλµY ν ,

which is an Einstein’s connection with zero torsion vector.

Remark 4.2. In X4, since the tensor kλµ 6= 0 is skew-symmetric, we
know from elementary algebra that the rank of the matrix ((kλµ)) can
be either four or two. In virtue of (4.6)(a), in our case the rank must
be two. Therefore, the homogeneous equations (4.10)(a) have at least
two distinct solutions Y ν

1 : (0, 0, 1, 1) and Y ν
2 : (ψ,−φ, 0, 0). Every linear

combination

(4.12) Y ν = ρY ν
1 + ηY ν

2 : (ηψ,−ηφ, ρ, ρ)

with scalars ρ, η is also a solution of (4.10)(a). On the other hand, if
(4.12) is a solution of the condition (4.10)(b), then, in virtue of k12 = 0
and Yλ = hλνY

ν : (ηψ,−ηφ, ρ,−ρ), we obtain

(4.13) 0 = ∂3 k12 = −2k3[1 Y2] = −φ(−ηφ) + ψ(ηψ) = η(φ2 + ψ2),
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which implies that η = 0. Therefore the solutions of the conditions
(4.10) are of the form :

(4.14) Y ν = ρY ν
1 = ρAν ,

for some nonzero real-valued function ρ = ρ(x1, x2, x3, x4) to be deter-
mined.

Theorem 4.3. In X4, the vector Y ν = ρAν given by (4.14) is a
solution of the conditions (4.10) if and only if the vector Bλ given by
(4.2)(b) satisfies the following condition

(4.15) ∂ω Bµ = ρAωBµ.

Proof. Suppose that (4.15) is satisfied. Differentiating both sides of
(4.4), and making use of (4.8)(c) and (4.15), we obtain

(4.16) ∂ω kλµ = Aλ(ρAωBµ)−Aµ(ρAωBλ) = −kωλ(ρAµ) + kωµ(ρAλ).

Hence, in virtue of Remark 4.2 and the relation (4.16) , the vector Y ν =
ρAν is a solution of (4.10). Conversely, suppose that the vector Y ν =
ρAν is a solution of (4.10). Since Bµ = k3µ, we obtain

∂ωBµ = ∂ω k3µ = −kω3Yµ + kωµY3

= −(AωB3 −A3Bω)(ρAµ) + (AωBµ −AµBω)(ρA3) = ρAωBµ,
(4.17)

in virtue of (4.4), (4.10)(b), and (4.2). Hence the condition (4.15) is
satisfied.

Theorem 4.4. In X4, the condition (4.15) is satisfied if and only if
the functions ρ, φ, and ψ, given in (4.15), satisfy the following conditions,
respectively,

(4.18) ∂φ/∂x1 = 0, ∂φ/∂x2 = 0, ∂φ/∂x3 = ρφ, ∂φ/∂x4 = −ρφ,

(4.19) ∂ψ/∂x1 = 0, ∂ψ/∂x2 = 0, ∂ψ/∂x3 = ρψ, ∂ψ/∂x4 = −ρψ

(4.20) ∂ρ/∂x1 = 0, ∂ρ/∂x2 = 0, ∂ρ/∂x3 + ∂ρ/∂x4 = 0.

Proof. In virtue of (4.15), we obtain

(4.21) ∂φ/∂xω = ∂ωB1 = ρAωB1 = ρφAω,

which imply (4.18), in virtue of (4.2)(a). Similarly, we obtain (4.19).
Next, differentiating both sides of (4.21), we obtain

(4.22)
∂2φ

∂xν∂xω
=

∂ρ

∂xν
φAω + ρ2φAνAω,
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in virtue of (4.8)(c) and (4.21), and we also obtain

(4.23)
∂2φ

∂xω∂xν
=

∂ρ

∂xω
φAν + ρ2φAωAν .

Hence we obtain

(4.24) 0 =
∂2φ

∂xν∂xω
− ∂2φ

∂xω∂xν
= (

∂ρ

∂xν
Aω − ∂ρ

∂xω
Aν)φ,

which implies that, since φ 6= 0,

(4.25)
∂ρ

∂xν
Aω − ∂ρ

∂xω
Aν = 0.

From the above condition (4.25), we obtain that if ν = 1 and ω = 3,
then ∂ρ/∂x1 = 0, if ν = 2 and ω = 3, then ∂ρ/∂x2 = 0, and if ν = 3 and
ω = 4, then ∂ρ/∂x3 + ∂ρ/∂x4 = 0. Hence we obtain (4.20). Obviously,
the converse is true.

Theorem 4.5. In X4, for the basic tensor gλµ given by (4.3), the
connection (4.11) which is a solution of (2.6) and (2.7)(a) is given by

(4.26) Γν
λµ = 2ρA[λBµ]A

ν ,

where ρ satisfies the condition (4.20). And the curvature tensor Rα
λµα

with respect to this connection (4.26) is given by

(4.27) Rω
λµν = 2{(∂[µρ)Bν]Aλ − (∂[µρ)Aν]Bλ}Aω + 2ρ2A[µBν]AλAω,

and its contracted curvature tensor Rλµ satisfies

(4.28) Rλµ = 0.

Proof. Substituting (4.4) and (4.14) into (4.11), we obtain (4.26),
in virtue of Remark 4.2, Theorem 4.3, and Theorem 4.4. Substituting
(4.26) into (2.8), we obtain (4.27) by a straightforward computation. In
the next, Contracting for (4.27) for ω and ν, we obtain

(4.29) Rλµ = −2(∂αρ)AαA[λBµ].

On the other hand, in virtue of (4.7)(a) and (4.20), we obtain

(4.30) (∂αρ)Aα = ∂ρ/∂x3 + ∂ρ/∂x4 = 0

Hence we obtain (4.28).

Remark 4.6. The set of the functions φ satisfying (4.18) is not empty.
For example, when ρ= constant, the function

(4.31) φ(x1, x2, x3, x4) = eρ(x3−x4)

satisfies (4.18). Similarly, we can define the function ψ satisfying (4.19).
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Conclusion. In virtue of Theorem 4.5, if X4 is endowed with a non-
symmetric tensor gλµ = hλµ + kλµ such that (4.1) and (4.5), where φ
and ψ satisfy the conditions (4.18) and (4.19), respectively. Then a so-
lution Γν

λµ of (2.6) and (2.7)(a) is given by (4.26), where ρ satisfies the
condition (4.20). In the next, since the contracted curvature tensor Rλµ

with respect to the connection (4.26) satisfies Rλµ = 0, the field equa-
tion (2.7)(c) is satisfied automatically, and the field equation (2.7)(b) is
equivalent to ∂[λPµ] = 0. Since the field equation (2.7)(b) is satisfied by
a vector Pµ = ∂µP , the vector Pµ = ∂µP is an Einstein’s vector.
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