# A SOLUTION OF EINSTEIN'S FIELD EQUATIONS FOR THE THIRD CLASS IN $X_4$

Jong Woo Lee\*

ABSTRACT. The main goal in the present paper is to obtain a solution of Einstein's unified field equations for the third class in  $X_4$ .

#### 1. Introduction

Einstein([1]) proposed a new unified field theory that would include both gravitation and electromagnetism. Hlavatý([5]) gave the mathematical foundation of the Einstein's unified field theory in a 4-dimensional generalized Riemannian space  $X_4$  (i.e., space-time) for the first time. Since then this theory had been generalized in a generalized Riemannian manifold  $X_n$ , the so-called Einstein's n-dimensional unified field theory, and many consequences of this theory has been obtained by a number of mathematicians. However, it has been unable yet to represent a general n-dimensional Einstein's connection in a surveyable tensorial form, probably due to the complexity of the higher dimensions. The purpose of the present paper is to obtain a necessary and sufficient condition for a connection with a new torsion tensor be an Einstein's connection in  $X_n$ . In the next, we obtain a solution of Einstein's field equations for the third class in  $X_4$ . The obtained results and discussions in the present paper will be useful for the 4-dimensional considerations of the unified field theory.

### 2. Preliminary

Let  $X_n$  be an n-dimensional generalized Riemannian manifold covered by a system of real coordinate neighborhoods  $\{U; x^{\nu}\}$ , where, here and

Received October 31, 2012; Accepted January 11, 2013.

<sup>2010</sup> Mathematics Subject Classification: Primary 53A45, 53B50, 53C25.

Key words and phrases: Einstein's connection, Einstein's field equations, Einstein's vector, the third class, torsion tensor, torsion vector, unified field theory.

in the sequel, Greek indices run over the range  $\{1, 2, \dots, n\}$  and follow the summation convention. The algebraic structure on  $X_n$  is imposed by a basic real non-symmetric tensor  $g_{\lambda\mu}$ , which may be split into its symmetric part  $h_{\lambda\mu}$  and skew-symmetric part  $k_{\lambda\mu}$ :

$$(2.1) g_{\lambda\mu} = h_{\lambda\mu} + k_{\lambda\mu},$$

where we assume that

(2.2) (a) 
$$G = det((g_{\lambda \mu})) \neq 0$$
, (b)  $H = det((h_{\lambda \mu})) \neq 0$ .

Since  $det((h_{\lambda\mu})) \neq 0$ , we may define a unique tensor  $h^{\lambda\nu}(=h^{\nu\lambda})$  by

$$(2.3) h_{\lambda\mu}h^{\lambda\nu} = \delta^{\nu}_{\mu}.$$

We use the tensors  $h^{\lambda\nu}$  and  $h_{\lambda\mu}$  as tensors for raising and/or lowering indices for all tensors defined on  $X_n$  in the usual manner. Then we may define new tensors by

(2.4) (a) 
$$k^{\alpha}_{\mu} = k_{\lambda\mu}h^{\lambda\alpha}$$
, (b)  $k_{\lambda}^{\alpha} = k_{\lambda\mu}h^{\mu\alpha}$ , (c)  $k^{\alpha\beta} = k_{\lambda\mu}h^{\lambda\alpha}h^{\mu\beta}$ .

The manifold  $X_n$  is assumed to be connected by a general real connection  $\Gamma^{\nu}_{\lambda\mu}$  which may also be split into its symmetric part  $\Lambda^{\nu}_{\lambda\mu}$  and skew-symmetric part  $S_{\lambda\mu}{}^{\nu}$ , called the *torsion tensor* of  $\Gamma^{\nu}_{\lambda\mu}$ :

(2.5) 
$$(a) \Lambda^{\nu}_{\lambda\mu} = \Gamma^{\nu}_{(\lambda\mu)} = \frac{1}{2} (\Gamma^{\nu}_{\lambda\mu} + \Gamma^{\nu}_{\mu\lambda}),$$
$$(b) S_{\lambda\mu}{}^{\nu} = \Gamma^{\nu}_{[\lambda\mu]} = \frac{1}{2} (\Gamma^{\nu}_{\lambda\mu} - \Gamma^{\nu}_{\mu\lambda}).$$

The Einstein's n-dimensional unified field theory in  $X_n$  is governed by the following set of equations:

(2.6) 
$$\partial_{\omega}g_{\lambda\mu} - g_{\alpha\mu}\Gamma^{\alpha}_{\lambda\omega} - g_{\lambda\alpha}\Gamma^{\alpha}_{\omega\mu} = 0 \qquad (\partial_{\nu} = \frac{\partial}{\partial x^{\nu}}),$$

and

(2.7) (a) 
$$S_{\lambda} = S_{\lambda\alpha}{}^{\alpha} = 0$$
, (b)  $R_{[\lambda\mu]} = \partial_{[\lambda}P_{\mu]}$ , (c)  $R_{(\lambda\mu)} = 0$ ,

where  $P_{\mu}$  is an arbitrary vector, called the *Einstein's vector*, and  $R_{\lambda\mu}$  is the contracted curvature tensor  $R^{\alpha}_{\lambda\mu\alpha}$  of the curvature tensor  $R^{\omega}_{\lambda\mu\nu}$ :

(2.8) 
$$R^{\omega}_{\lambda\mu\nu} = \partial_{\mu}\Gamma^{\omega}_{\lambda\nu} - \partial_{\nu}\Gamma^{\omega}_{\lambda\mu} + \Gamma^{\alpha}_{\lambda\nu}\Gamma^{\omega}_{\alpha\mu} - \Gamma^{\alpha}_{\lambda\mu}\Gamma^{\omega}_{\alpha\nu}.$$

The equation (2.6) is called the *Einstein's equation*, and the solution  $\Gamma^{\nu}_{\lambda\mu}$  of the Einstein's equation is called an *Einstein's connection*. And the vector  $S_{\lambda}$ , defined by (2.7)(a), is called the *torsion vector*.

# 3. An Einstein's connection in $X_n$

The following theorem was proved by  $Hlavat\acute{y}([5])$ .

THEOREM 3.1. In  $X_n$ , if the Einstein's equation (2.6) admits a solution  $\Gamma^{\nu}_{\lambda u}$ , then this solution must be of the form

(3.1) 
$$\Gamma^{\nu}_{\lambda\mu} = \{\lambda^{\nu}_{\mu}\} + 2h^{\nu\alpha}S_{\alpha(\lambda}{}^{\beta}k_{\mu})_{\beta} + S_{\lambda\mu}{}^{\nu},$$

where  $\{\lambda^{\nu}{}_{\mu}\}$  are the Christoffel symbols defined by  $h_{\lambda\mu}$ .

REMARK 3.2. In virtue of Theorem 3.1, the equation (3.1) reduces the investigation of  $\Gamma^{\nu}_{\lambda\mu}$  to the study of its torsion tensor  $S_{\lambda\mu}^{\nu}$ . Hence in order to know an Einstein's connection  $\Gamma^{\nu}_{\lambda\mu}$ , it is necessary and sufficient to know its torsion tensor  $S_{\lambda\mu}^{\nu}$ . For this, we introduce a new torsion tensor  $S_{\lambda\mu}^{\nu}$  given by

$$(3.2) S_{\lambda\mu}{}^{\nu} = 2\delta^{\nu}_{[\lambda}k_{\mu]\alpha}Y^{\alpha} + k_{\lambda\mu}Y^{\nu},$$

for some nonzero vector  $Y_{\lambda}$ .

THEOREM 3.3. In  $X_n$ , if the connection (3.1) is a connection such that its torsion tensor is of the form (3.2) for some nonzero vector  $Y_{\lambda}$ , then the connection is given by

(3.3) 
$$\Gamma^{\nu}_{\lambda\mu} = \{_{\lambda}{}^{\nu}{}_{\mu}\} + 2\delta^{\nu}_{[\lambda}k_{\mu]\alpha}Y^{\alpha} + k_{\lambda\mu}Y^{\nu}.$$

*Proof.* Since the torsion tensor of the connection (3.1) is of the form (3.2), we obtain

$$(3.4) 2h^{\nu\alpha}S_{\alpha(\lambda}{}^{\beta}k_{\mu)\beta} = 0$$

by a straightforward computation. Substituting (3.2) and (3.4) into (3.1), we obtain (3.3).

THEOREM 3.4. In  $X_n$ , the connection (3.3) is an Einstein's connection if and only if the vector  $Y_{\lambda}$  defining (3.3) satisfies the following condition

(3.5) 
$$\nabla_{\nu} k_{\lambda\mu} = 2h_{\nu[\lambda} k_{\mu]\alpha} Y^{\alpha} - 2k_{\nu[\lambda} Y_{\mu]},$$

where  $\nabla_{\omega}$  is the symbolic vector of the covariant derivative with respect to  $\{\lambda^{\nu}_{\mu}\}$ .

*Proof.* The connection (3.3) is an Einstein's connection if and only if the connection (3.3) satisfies the Einstein's equation (2.6). Substituting (2.1) and (3.3) into (2.6), and making use of  $\nabla_{\nu} h_{\lambda\mu} = 0$ , we obtain

(3.6) 
$$\nabla_{\nu} k_{\lambda\mu} - 2h_{\nu[\lambda} k_{\mu]\alpha} Y^{\alpha} + 2k_{\nu[\lambda} Y_{\mu]} = 0$$

by a straightforward computation. Hence the connection (3.3) is an Einstein's connection if and only if the vector  $Y_{\lambda}$  defining (3.3) satisfies the condition (3.5).

THEOREM 3.5. In  $X_n$ , if the connection (3.3) is an Einstein's connection, then its torsion vector satisfies the following relation:

$$(3.7) S_{\lambda} = \nabla_{\alpha} k_{\lambda}^{\alpha}$$

*Proof.* Contracting for (3.2) for  $\mu$  and  $\nu$ , we obtain

$$(3.8) S_{\lambda} = S_{\lambda\alpha}{}^{\alpha} = (2 - n)k_{\lambda\alpha}Y^{\alpha}.$$

Next, multiplying  $h^{\mu\alpha}$  on both sides of (3.5), and contracting for  $\nu$  and  $\alpha$ , we obtain

(3.9) 
$$\nabla_{\alpha} k_{\lambda}{}^{\alpha} = (2 - n) k_{\lambda \alpha} Y^{\alpha}.$$

The results (3.8) and (3.9) imply the relation (3.7).

## 4. A solution of field equations for the third class in $X_4$

In this section we shall display a solution for the third class of (2.6) and (2.7) in  $X_4$ . Assume  $h_{\lambda\mu}$  to be of the form

(4.1) 
$$((h_{\lambda\mu})) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

Define two vectors by

(4.2) (a) 
$$A_{\lambda}:(0,0,1,-1),$$
 (b)  $B_{\lambda}:(\phi,\psi,0,0),$ 

where  $\phi = \phi(x_1, x_2, x_3, x_4)$  and  $\psi = \psi(x_1, x_2, x_3, x_4)$  are nonzero real-valued functions to be determined. Now, we define a basic tensor  $g_{\lambda\mu}$  in  $X_4$  by

$$(4.3) g_{\lambda\mu} = h_{\lambda\mu} + k_{\lambda\mu},$$

where  $h_{\lambda\mu}$  is defined by (4.1), and  $k_{\lambda\mu}$  is defined by

$$(4.4) k_{\lambda\mu} = 2A_{\lceil \lambda}B_{\mu \rceil},$$

that is,

(4.5) 
$$((k_{\lambda\mu})) = \begin{pmatrix} 0 & 0 & -\phi & \phi \\ 0 & 0 & -\psi & \psi \\ \phi & \psi & 0 & 0 \\ -\phi & -\psi & 0 & 0 \end{pmatrix},$$

which is obviously of the third class:

(4.6) (a) 
$$Det(k_{\lambda\mu}) = 0$$
, (b)  $K(=\frac{1}{4}k_{\alpha\beta}k^{\alpha\beta}) = 0$ .

Then all the Christoffel symbols  $\{\lambda^{\nu}_{\mu}\}$  vanish. Hence the components of the first covariant derivatives with respect to  $\{\lambda^{\nu}_{\mu}\}$  are ordinary derivatives, and  $H^{\omega}_{\lambda\mu\nu}=0$ . Furthermore,

(4.7) (a) 
$$A^{\lambda}(=h^{\lambda\nu}A_{\nu}):(0,0,1,1),$$
 (b)  $B^{\lambda}(=h^{\lambda\nu}B_{\nu}):(\phi,\psi,0,0)$ 

(4.8) (a) 
$$A_{\alpha}A^{\alpha} = A_{\alpha}B^{\alpha} = 0$$
, (b)  $k_{\lambda\alpha}A^{\alpha} = 0$ , (c)  $\partial_{\lambda}A_{\mu} = 0$ .

The following theorem is immediate consequences of Theorem 3.3 and Theorem 3.4, in virtue of (2.7)(a), (3.8), and (4.3).

THEOREM 4.1. In  $X_4$ , for the basic tensor  $g_{\lambda\mu}$  given by (4.3), the connection (3.3) is given by

(4.9) 
$$\Gamma^{\nu}_{\lambda\mu} = 2\delta^{\nu}_{[\lambda}k_{\mu]\alpha}Y^{\alpha} + k_{\lambda\mu}Y^{\nu},$$

and this connection (4.9) is a solution of (2.6) and (2.7)(a) if and only if the vector  $Y^{\nu}$  defining (4.9) satisfies the following conditions

(4.10) 
$$(a) k_{\mu\alpha} Y^{\alpha} = 0, \quad (b) \partial_{\nu} k_{\lambda\mu} = -2k_{\nu[\lambda} Y_{\mu]}.$$

If these conditions (4.10) are satisfied, then the connection (4.9) is given by

(4.11) 
$$\Gamma^{\nu}_{\lambda\mu} = k_{\lambda\mu} Y^{\nu},$$

which is an Einstein's connection with zero torsion vector.

REMARK 4.2. In  $X_4$ , since the tensor  $k_{\lambda\mu} \neq 0$  is skew-symmetric, we know from elementary algebra that the rank of the matrix  $((k_{\lambda\mu}))$  can be either four or two. In virtue of (4.6)(a), in our case the rank must be two. Therefore, the homogeneous equations (4.10)(a) have at least two distinct solutions  $Y_1^{\nu}:(0,0,1,1)$  and  $Y_2^{\nu}:(\psi,-\phi,0,0)$ . Every linear combination

(4.12) 
$$Y^{\nu} = \rho Y_1^{\nu} + \eta Y_2^{\nu} : (\eta \psi, -\eta \phi, \rho, \rho)$$

with scalars  $\rho$ ,  $\eta$  is also a solution of (4.10)(a). On the other hand, if (4.12) is a solution of the condition (4.10)(b), then, in virtue of  $k_{12} = 0$  and  $Y_{\lambda} = h_{\lambda\nu}Y^{\nu} : (\eta\psi, -\eta\phi, \rho, -\rho)$ , we obtain

$$(4.13) 0 = \partial_3 k_{12} = -2k_{3[1} Y_{2]} = -\phi(-\eta\phi) + \psi(\eta\psi) = \eta(\phi^2 + \psi^2),$$

which implies that  $\eta = 0$ . Therefore the solutions of the conditions (4.10) are of the form:

$$(4.14) Y^{\nu} = \rho Y_1^{\nu} = \rho A^{\nu},$$

for some nonzero real-valued function  $\rho = \rho(x_1, x_2, x_3, x_4)$  to be determined

THEOREM 4.3. In  $X_4$ , the vector  $Y^{\nu} = \rho A^{\nu}$  given by (4.14) is a solution of the conditions (4.10) if and only if the vector  $B_{\lambda}$  given by (4.2)(b) satisfies the following condition

$$\partial_{\omega} B_{\mu} = \rho A_{\omega} B_{\mu}.$$

*Proof.* Suppose that (4.15) is satisfied. Differentiating both sides of (4.4), and making use of (4.8)(c) and (4.15), we obtain

$$(4.16) \ \partial_{\omega} k_{\lambda\mu} = A_{\lambda}(\rho A_{\omega} B_{\mu}) - A_{\mu}(\rho A_{\omega} B_{\lambda}) = -k_{\omega\lambda}(\rho A_{\mu}) + k_{\omega\mu}(\rho A_{\lambda}).$$

Hence, in virtue of Remark 4.2 and the relation (4.16), the vector  $Y^{\nu} = \rho A^{\nu}$  is a solution of (4.10). Conversely, suppose that the vector  $Y^{\nu} = \rho A^{\nu}$  is a solution of (4.10). Since  $B_{\mu} = k_{3\mu}$ , we obtain

(4.17) 
$$\partial_{\omega} B_{\mu} = \partial_{\omega} k_{3\mu} = -k_{\omega 3} Y_{\mu} + k_{\omega \mu} Y_{3}$$

$$= -(A_{\omega} B_{3} - A_{3} B_{\omega})(\rho A_{\mu}) + (A_{\omega} B_{\mu} - A_{\mu} B_{\omega})(\rho A_{3}) = \rho A_{\omega} B_{\mu},$$

in virtue of (4.4), (4.10)(b), and (4.2). Hence the condition (4.15) is satisfied.  $\hfill\Box$ 

THEOREM 4.4. In  $X_4$ , the condition (4.15) is satisfied if and only if the functions  $\rho$ ,  $\phi$ , and  $\psi$ , given in (4.15), satisfy the following conditions, respectively,

(4.18) 
$$\partial \phi / \partial x^1 = 0$$
,  $\partial \phi / \partial x^2 = 0$ ,  $\partial \phi / \partial x^3 = \rho \phi$ ,  $\partial \phi / \partial x^4 = -\rho \phi$ ,

$$(4.19) \quad \partial \psi / \partial x^1 = 0, \quad \partial \psi / \partial x^2 = 0, \quad \partial \psi / \partial x^3 = \rho \psi, \quad \partial \psi / \partial x^4 = -\rho \psi$$

$$(4.20) \qquad \partial \rho/\partial x^1 = 0, \ \partial \rho/\partial x^2 = 0, \ \partial \rho/\partial x^3 + \partial \rho/\partial x^4 = 0.$$

*Proof.* In virtue of (4.15), we obtain

$$(4.21) \partial \phi / \partial x^{\omega} = \partial_{\omega} B_1 = \rho A_{\omega} B_1 = \rho \phi A_{\omega},$$

which imply (4.18), in virtue of (4.2)(a). Similarly, we obtain (4.19). Next, differentiating both sides of (4.21), we obtain

(4.22) 
$$\frac{\partial^2 \phi}{\partial x^{\nu} \partial x^{\omega}} = \frac{\partial \rho}{\partial x^{\nu}} \phi A_{\omega} + \rho^2 \phi A_{\nu} A_{\omega},$$

in virtue of (4.8)(c) and (4.21), and we also obtain

(4.23) 
$$\frac{\partial^2 \phi}{\partial x^{\omega} \partial x^{\nu}} = \frac{\partial \rho}{\partial x^{\omega}} \phi A_{\nu} + \rho^2 \phi A_{\omega} A_{\nu}.$$

Hence we obtain

$$(4.24) 0 = \frac{\partial^2 \phi}{\partial x^{\nu} \partial x^{\omega}} - \frac{\partial^2 \phi}{\partial x^{\omega} \partial x^{\nu}} = (\frac{\partial \rho}{\partial x^{\nu}} A_{\omega} - \frac{\partial \rho}{\partial x^{\omega}} A_{\nu}) \phi,$$

which implies that, since  $\phi \neq 0$ .

(4.25) 
$$\frac{\partial \rho}{\partial x^{\nu}} A_{\omega} - \frac{\partial \rho}{\partial x^{\omega}} A_{\nu} = 0.$$

From the above condition (4.25), we obtain that if  $\nu = 1$  and  $\omega = 3$ , then  $\partial \rho / \partial x^1 = 0$ , if  $\nu = 2$  and  $\omega = 3$ , then  $\partial \rho / \partial x^2 = 0$ , and if  $\nu = 3$  and  $\omega = 4$ , then  $\partial \rho / \partial x^3 + \partial \rho / \partial x^4 = 0$ . Hence we obtain (4.20). Obviously, the converse is true.

THEOREM 4.5. In  $X_4$ , for the basic tensor  $g_{\lambda\mu}$  given by (4.3), the connection (4.11) which is a solution of (2.6) and (2.7)(a) is given by

(4.26) 
$$\Gamma^{\nu}_{\lambda\mu} = 2\rho A_{[\lambda} B_{\mu]} A^{\nu},$$

where  $\rho$  satisfies the condition (4.20). And the curvature tensor  $R^{\alpha}_{\lambda\mu\alpha}$  with respect to this connection (4.26) is given by

$$(4.27) \quad R^{\omega}_{\lambda\mu\nu} = 2\{(\partial_{[\mu}\rho)B_{\nu]}A_{\lambda} - (\partial_{[\mu}\rho)A_{\nu]}B_{\lambda}\}A^{\omega} + 2\rho^{2}A_{[\mu}B_{\nu]}A_{\lambda}A^{\omega},$$

and its contracted curvature tensor  $R_{\lambda\mu}$  satisfies

$$(4.28) R_{\lambda\mu} = 0.$$

*Proof.* Substituting (4.4) and (4.14) into (4.11), we obtain (4.26), in virtue of Remark 4.2, Theorem 4.3, and Theorem 4.4. Substituting (4.26) into (2.8), we obtain (4.27) by a straightforward computation. In the next, Contracting for (4.27) for  $\omega$  and  $\nu$ , we obtain

$$(4.29) R_{\lambda\mu} = -2(\partial_{\alpha}\rho)A^{\alpha}A_{[\lambda}B_{\mu]}.$$

On the other hand, in virtue of (4.7)(a) and (4.20), we obtain

$$(4.30) \qquad (\partial_{\alpha}\rho)A^{\alpha} = \partial\rho/\partial x^{3} + \partial\rho/\partial x^{4} = 0$$

Hence we obtain (4.28).

Remark 4.6. The set of the functions  $\phi$  satisfying (4.18) is not empty. For example, when  $\rho$ = constant, the function

(4.31) 
$$\phi(x_1, x_2, x_3, x_4) = e^{\rho(x^3 - x^4)}$$

satisfies (4.18). Similarly, we can define the function  $\psi$  satisfying (4.19).

Conclusion. In virtue of Theorem 4.5, if  $X_4$  is endowed with a non-symmetric tensor  $g_{\lambda\mu}=h_{\lambda\mu}+k_{\lambda\mu}$  such that (4.1) and (4.5), where  $\phi$  and  $\psi$  satisfy the conditions (4.18) and (4.19), respectively. Then a solution  $\Gamma^{\nu}_{\lambda\mu}$  of (2.6) and (2.7)(a) is given by (4.26), where  $\rho$  satisfies the condition (4.20). In the next, since the contracted curvature tensor  $R_{\lambda\mu}$  with respect to the connection (4.26) satisfies  $R_{\lambda\mu}=0$ , the field equation (2.7)(c) is satisfied automatically, and the field equation (2.7)(b) is equivalent to  $\partial_{[\lambda}P_{\mu]}=0$ . Since the field equation (2.7)(b) is satisfied by a vector  $P_{\mu}=\partial_{\mu}P$ , the vector  $P_{\mu}=\partial_{\mu}P$  is an Einstein's vector.

## References

- [1] A. Einstein, *The meaning of relativity*, Princeton University Press, Princeton, New Jersey, 1950.
- [2] J. W. Lee, Field equations of SE(k)-manifold  $X_n$ , International Journal of Theoretical Physics **30** (1991), 1343–1353.
- [3] J. W. Lee, An Einstein's connection with zero torsion vector in evendimensional UFT  $X_n$ , Jour. of the Chungcheong Math. Soc. **24** (2011), no. 4, 869–881.
- [4] J. W. Lee and K. T. Chung, A solution of Einstein's unified field equations, Comm. Korean Math. Soc. 11 (1996), no. 4, 1047–1053.
- [5] V. Hlavatý, Geometry of Einstein's unified field theory, P. Noordhoff Ltd. New York, 1957.

\*

Department of Mathematics Yonsei University Wonju 220-710, Republic of Korea *E-mail*: jwlee806@yonsei.ac.kr