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DETERMINATION OF MINIMUM LENGTH OF SOME
LINEAR CODES

Eun Ju CHEON*

ABSTRACT. Hamada ([8]) and Maruta ([17]) proved the minimum
length n3(6,d) = g3(6,d) + 1 for some ternary codes. In this paper
we consider such minimum length problem for ¢ > 4, and we prove
that ny(6,d) = g4(6,d) +1ford=¢° —¢* —¢* —2¢+e¢,1 <e<q.
Combining this result with Theorem A in [4], we have nq(6,d) =
9q(6,d)+1for ¢° —¢* —¢* —2¢+1 < d < ¢° — ¢* — ¢* with ¢ > 4.
Note that 1n4(6,d) = g4(6,d) for ¢ —¢* —¢* +1 < d < ¢° by
Theorem 1.2.

1. Introduction

Let I, denote the Galois field of ¢ elements and Fy; denote the n-
dimensional vector space over F,, where ¢ is a prime power. For a
vector © = (x1,...,2,) € Fy, the weight of = denoted by w(z) is the
number of nonzero coordinates of x, that is, w(x) = [{i | x; # 0}|.

An [n,k,d],; linear code C is a k-dimensional subspace of Fy over
F, with minimum distance d. One of the central problems in coding
theory is to determine optimal linear codes. This is to optimize one of
the parameters n, k and d for given the other two as follows; (1) Find
the smallest length n, denoted by ng(k,d), for which there exists an
[n, k,d], code for given k and d. (2) Find the largest minimum distance
d, denoted by d,(n, k), for which there exists an [n, k, d], code for given
k and n. (3) Find the largest dimension k, denoted by k4(n, d), for which
there exists an [n, k, d], code for given n and d.
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A code of length ny(k, d) [resp. minimum distance dg(n, k), dimension
kq(n,d)] is said to be length-optimal [resp. distance-optimal, dimension-
optimal]. Note that a length-optimal code is both distance-optimal and
dimension-optimal. So we concentrate on the length-optimal codes. The
following is an important lower bound on n4(k,d) which is called the
Griesmer bound.

THEOREM 1.1 ([9]). (Griesmer bound) For an [n, k, d], linear code,
we have n > g4(k,d), where g4(k, d) —d—l—{w { —‘ "+L%1]

By Theorem 1.1, we note ny(k,d) > g4(k,d) for all k and d. It is
natural to ask whether there exists a [g4(k, d), k, d], code for given d and
k. The following theorem gives a large class of linear codes meeting the
Griesmer bound which we call Griesmer codes.

THEOREM 1.2 ([9]). Let s = [qk ] and d = s¢"~t =S| g%t with
E>wup >up > - >up and u; > ujyg—q for 1 <i <p—q+1. If

min{s+1,p}

Z u; < sk,

i=1
then ng(k,d) = gq(k,d).
Theorem 1.2 provides a starting point for finding ny(k,d). For k =1
and 2, we have ny(k,d) = g4(k,d) for all d. Thus we are interested in

k> 3.
From Theorem 1.2, we have the following:

COROLLARY 1.3 ([5]). We have ny(k,d) = g4(k,d) for d satisfying
one of the following:
(a) qkl—l _ qk—l—t _ qt + 1 é d S qk!—l _ qk—l—t

-1
with1 <t < V:QJlforsz),

k—1
M) =t +1<d< g witht = {2J for k > 3,

where |z | denotes the largest integer less than or equal to .

Much research on ng4(k,d) has been done for small dimension & and
small ¢ by various methods. For k = 3,4,5 and ¢ = 3,4,5, we can find
tables of the values of ny(k,d) in [11] and [16].

To find the value of ny(k,d) for general ¢ or k is more interesting.

For minimum distance d with ¢* ' —¢* 17t — ¢ —sqg+1<d < ¢! —
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¢t gt — (s —1)gfor 1 <t < Lk—glJ and 1 < s < g — 1, which is
just below the values for d in Corollary 1.3, it is known that there is no
Griesmer code with

(I)t=1and s=1for g >3,k >5in (3,4, 13, 14, 15],

(2)t=1and 2<s<qg—1in [15],

(3)s=1landt= L%J fork>5in[3],2<t < Lk—glJ —1for k> T7in
[5].

Naturally we can ask the casest > 2 or s > 2. Whent =2 and s = 2,
there is a result for the question for £ =5 in [2].

In this paper, we consider the case t = 2 and s = 2 for kK = 6. In other
words, we consider the problem whether Griesmer codes with minimum
distance d with ¢° —¢3 —¢*> —2¢+1 < d < ¢® — ¢* — ¢ — ¢ exist or not for
q > 4. For ¢ = 2 or 3, we note that ny(6,d) = ¢g2(6,d) with d = 17,18
([6]) and n3(6,d) = g3(6,d) + 1 with d = 202,203,204 ([8, 17]).

As the first step to determine the exact value of ny(6,d) with d =
C——¢*—2¢+0a,1 < a < qgand g > 4, we need to prove the following.

THEOREM A. There does not exist a [g4(6,d),6,d], code with d =
q5—q3—q2—2q—|—1forq24.

In Section 3, we give a proof of Theorem A and in Section 2, we recall
some results needed to prove Theorem A.

Recall that the existence of an [n, k, d], code with d > 2 implies the
existence of an [n—1, k,d— 1], code. Therefore, by Theorem A, we have
the following.

THEOREM B. For ¢ > 4, we have ny(6,d) > g,(6,d) + 1 with ¢° —
- -20+1<d<¢-¢-¢—q

If we let k = 6 in Theorem 16 in [3], then we have the following.

THEOREM 1.4 ([3]). For q > 3, there exists a [g4(6,d) +1,6,d], code
for® —® =2 +1<d<¢®— ¢ — ¢*

By Theorem B and Theorem 1.4, we conclude the next theorem.

THEOREM C. For ¢ > 4, we have ny(6,d) = g,(6,d) + 1 with ¢° —
F—-2q+1<d<P - - —¢

Finally, combining the result of [4] with Theorem C, for ¢ > 4, we
have the following:

nq(6,d):gq(ﬁ,d)+1forq5fq37q2—2q+1§d§q5fq3fq2.
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2. Preliminaries

Let PG(r,q) be the r-dimensional projective space over F, and let 6,
be the number of points in PG(r,q). Then 6§, = ¢"+¢" "' +---4q+1 for
a positive integer r. For convenience, we let g = 1 and 6, =0 if r < 0.
We call a subspace of dimension j in PG(r,q) a j-flat. In particular, we
call a subspace of dimension 0 [resp. 1, 2, r — 1] a point [resp. a line, a
plane, a hyperplane].

Let C be a projective [n, k, d], linear code with a generator matrix of
G. Then no two columns of G are linearly dependent. Each column of
G can be considered as a point of PG(k —1,q). Let C; be the set of all
columns of G and let Cy = CY, the complement of C; in PG(k — 1,q).
For a subset S in PG(k — 1,q), we use the following notation;

Co(S)Z ’SﬁCo’, c(S):\SﬁCl\ and C():|C()’.

In particular, for a projective [n,6,d], linear code C, we have n =
|C1], co =05 —n and d =n — max{c(H) | H is a 4-flat in PG(5,q)}.

Now we recall theorems which play an important role to prove The-
orem A.

For a subset S in the r-dimensional affine space AG(r,q) over Fy, S
is a t-fold blocking set with respect to hyperplanes if every hyperplane
in AG(r,q) meets S in at least ¢ points.

THEOREM 2.1 ([1]). A t-fold blocking set S with respect to hyper-
planes in AG(r,q) satisfies

S| > (r+t—1)(g—1)+1.

A subset F' of PG(r,q) with |F| = f is called an {f, ¢; r, ¢}-minihyper
if every hyperplane meets F' in at least ¢ points. Hamada ([7]) showed
that for k > 3 and 1 < d < ¢¥~1, there is a one to one correspondence
between the set of all nonequivalent [n, k, d], Griesmer codes and the
set of all {#_1 —n,0k_2 —n+d; k — 1, ¢}-minihypers. Thus an [n,6,d],
Griesmer code C' with d < ¢° corresponds to a {05 —n, 0y —n +d; 5, q}-
minihyper. The following is a characterization of some minihypers.

THEOREM 2.2 ([7]). Let A1, Aa, ..., A\, be positive integers with 1 <
M< A< <Ap,<tand1<m<t
(a) In the case m = 1, S is a {0y,,0x,—1;t, ¢}-minihyper if and only if
S is a A\i-flat in PG(t,q).
(b) Inthecasem > 2 andt > Ap4+-Apm—1+1, Sisa{d ", Ox, > ir; Or,—1;
t,q}-minihyper if and only if S consists of disjoint union of \;-flats
in PG(t,q).
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(c) In the case m > 2 and t < A\, + A1, there is no {d> ;% 0y,,
>ty 0x,-1;t, ¢}-minihyper.
Let m;4(s) denote the minimum value of f for which an {f,6,_2 +

s; 7, ¢ }-minihyper exists for r > 3 and 1 < s < ¢—1. If we let r = 4 and
s=1or s =2 in Theorem 2.4 in [15], then we have the following.

THEOREM 2.3 ([15]). For q > 3, we have

(a) myq(l) > 03+ 601 +q,
(b) m47q(2) > 03+ 2601 +q.

In [14], Maruta proved the nonexistence of a [g,4(5, d), 5, d]4 code with
¢* —2¢> —q+1<d < q¢*—2¢* for ¢ > 3. Landjev and Maruta [resp.
Cheon et al.] proved the nonexistence of a [g4(5,d),5,d],; code with
¢* —2¢> —2¢+1<d<q*—2¢°>—qfor ¢ = 4 [resp. for ¢ > 5] in
[12] [resp. [2]]. Since those two intervals of d-values are consecutive, we
conclude that there does not exist a Griesmer code with ¢*—2¢?>—2¢+1 <
d < ¢*—2¢? for ¢ > 4. Here we express the above results with the notion
of minihyper respectively.

THEOREM 2.4 ([14]). For ¢ > 3 and 0 < e < ¢ — 1, there does not
exist a {202 + e, 2601;4, q}-minihyper.

THEOREM 2.5 ([2, 12]). For ¢ > 4 and 0 < e < g — 1, there does not
exist a {202 + 01 + e,20; + 1; 4, q}-minihyper.

For a Griesmer code, the following holds:

THEOREM 2.6 ([14]). Let C be a [g4(k,d), k,d], code and let v; =

g:o {#1 for 0 < j < k — 2. Then there exist j-flats A; with
c(4j) = v such that Ag € Ay C --- C Ap_o and that A; gives a
[vj:J + 1, — vj—1] Griesmer code for 1 < j <k — 2.

If we let ¢ = 1 in Theorem 7 in [10], then we have the following.

THEOREM 2.7. For an integer r > 0 and ¢ > r + 1, let S be a subset
in PG(m,q) with |S| < 0p—1 + 10y,—3. If |SNI| > 1 for any line | in
PG(m,q) then S contains a hyperplane.

3. Main theorem

In this section, we prove Theorem A. On the contrary, we assume that
for ¢ > 4, there exists a [g,(6, d), 6, d],, code C with d = ¢°—¢*—¢*—2q¢+1.
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Since C' is a Griesmer code, by Theorem 2.6, we have the following:
co = 03 + 02 + 2q,
co(H) > 02+ 61 + 1 for any 4-flat H in PG(5,q),
co(A) > 01 + 1 for any 3-flat A in PG(5,q),
co(6) > 1 for any 2-flat 6 in PG(5, q).
Let Hp be a 4-flat in PG(5,q) with co(Hy) = 02 + 61 + 1. Then Hy
is a {#2 + 601 + 1,60, + 1;4, ¢}-minihyper. By Theorem 2.2 (b), we note

that Ho N Cy is a disjoint union of a plane dg, a line [y and a point F.
For any 3-flat A in Hy, we have

(3.1) co(A)=602+2, 62+1, 20,+1, 20,, 61+2, or 6;+1.

For any 4-flat H in PG(5,q), we have co(Hyo N H) < 02+ 2 by (3.1).
Since co(H) > 0 + 01 + 1 for any 4-flat H, we have

CoZCo(H)-F Z Co(H,)—qCO(HoﬂH)
HonHCH'#£H
> co(H) 4 q(02 + 01 + 1) — q(62 + 2)
= CO(H) + q27
which implies ¢o(H) < 63 + 261 + ¢ — 1.
Therefore, we conclude that

(3.2) O2+601+1 < co(H) < 03+261+q—1 for any 4-flat H in PG(5,q).

Now we will derive a contradiction in two steps as follows: In Step I,
we prove that there is no 4-flat H such that

(3.3) 205 +1 < co(H) < 03+ 205 +q — 1.

Then, by (3.2), we conclude that 02+ 601 +1 < ¢o(H) < 2605 for any 4-flat
H in PG(5,q). In Step II, we will prove that it is impossible.

Step I. We divide the interval (3.3) into five small intervals, which we
refer to as Case 1, ..., Case 5 and we prove the nonexistence of a 4-flat
H with ¢y(H) belonging to each small interval.

When we prove them we use the following computation frequently:
For a 4-flat Hy in PG(5,q), let A be a 3-flat in H;. Then we have

co = co(Hy) + Z co(H) — qeo(AQ)
ACH#H,

> co(Hy) +q(02+ 61+ 1) — qeo(4Q),
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and hence

H —
(3.4) co(a)y> Q=0 Ly g1

Case 1. There is no 4-flat H with 03+ 26; < co(H) < 03+ 20; +q— 1.

Proof. Suppose that there exists a 4-flat H; with c¢o(Hy) = 03+2601 +
g—1—f,0<f<qg—1. Let Abe a 3-flat in Hy. Using (3.4), we have
co(A) 292—1—2—5. Since 0 < f < ¢ — 1, we have

co(A) > 0 + 2 for all 3-flat A C H;.

Furthermore, if we let A = Hy N Hyp, then ¢o(A) = 02 + 2 since
Co(H() N Hl) < 0 + 2 by (31) Thus Cy N Hy is a {93 +20,+q—1-—
f,02 4+ 2;4, g}-minihyper, which contradicts Theorem 2.3 (b). O

Case 2. There is no 4-flat H with 03 + 601 +1 < ¢o(H) <03+ 61 +q.

Proof. Suppose that there exists a 4-flat H; with ¢o(Hy) = 03 + 601 +
g—f,0< f <qg—1. Let A be a 3-flat in H;. Using (3.4), we have
cop(A) >0+ 1since 0 < f <qg—1.

Suppose that co(A) > 0 + 2 for all 3-flat A C H;. By Theorem 2.3
(b), we have co(H1) > 63+ 261 + g which is a contradiction. Thus there
exists a 3-flat A with ¢p(A) =02+ 1. Then CoN Hy is a {03 + 61 + ¢ —
f,02 + 1;4, q}-minihyper. By Theorem 2.3 (a), we obtain f = 0, that
is, CoN Hy is a {03 + 01 + ¢, 02 + 1; 4, g}-minihyper. Here, we prove the
following claim.

Claim. C\y N Hy contains a 3-flat.

Proof of Claim: To prove Claim, it suffices to prove that for any line
lin Hy, | (CoN Hy)Nl| > 1 by Theorem 2.7. Suppose that there is a line
l1 in Hy with | (Co N Hy)Nly| = 0. Consider a 3-flat A in H; containing
l1. Then there is a 3-flat A’ containing l; with | (Co N H1)NA'| = 63+1
since co(H1) = 03 + 601 + ¢ and

1 1
co(H)=-—| Y. [(ConH)NA <E‘92’(92+2)'

th
IWCACH,
On the other hand, we have
co = co(Hr) + Z co(H) — geo(4")
A'CH,H#AH,
> co(H1) +q(02 + 61 +1) — q(f2 + 1) = 03 + 02 + 2¢.
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Thus we note c¢o(H) = 02+ 6, + 1 for any 4-flat H(# H;) containing A’.
Let Hy be a 4-flat containing A’ with ¢o(Hz) = 62 + 61 + 1. Then by
Theorem 2.2 (b), Cy N Hy consists of a plane, a line and a point. Since
| (CoN Hy)NHp| = | (CoN Hy)NA'| = 602+1, it holds that (Co N Hy)NA'
consists of a plane ¢’ and a point P’. Then | (Co N Hy)NIy| > |0'NI| > 1,
which is a contradiction to the choice of [1. Thus Claim is proved.

By Claim, CoN H; contains a 3-flat, say A;. Let S = (Co N Hy)— A;.
We note |S| = 601 + ¢. On the other hand, since co(A) > 02 + 1 for any
3-flat A in Hy, |[SNA| > 1 for any 3-flat A # Ay in H;. Thus S
can be considered as 1-fold blocking set with respect to hyperplanes in
AG(4,q). By Theorem 2.1, we have |S| > (4+1—1)(¢—1)+1=4¢—3
which is a contradiction since ¢ > 4. O

Case 3. There is no 4-flat H with 20, + 01 + q < co(H) < 03 + 0.

Proof. Suppose that there exists a 4-flat H; with co(Hy) = 65 +
0 —eq—f,0< f<qg—1,0<e < ¢ —q—3. By (3.4), we have
co(A) > 03 —e. Suppose there is a 3-flat Ay with ¢y(A;) = 02 —e. Since
0<e<q®—q—3, we have 20; +2 < (A1) < 6. By (3.1), we note
that co(H) > 03 + 01 + 2 for any 4-flat H containing A;. Thus we have

C():C()<H1)+ Z Co(H)—ch(Al)
A1CH,H#H,

> co(H1) +q(02 + 61 +2) —q(02 —e) =03+ 02 + 2 + 01 — (f + 1),

which is a contradiction since 0 < f < ¢ —1. Thus ¢p(A) > 0 —e+1
for any 3-flat A in Hj.

On the other hand, H; corresponds to an [ni, 5, d1], linear code with
ny =0s—co(Hy) =0s—03—01+eq+ fand diy > ¢* —¢* —q+eq+ f—e.
Applying the Griesmer bound, we have

9¢(5,d1) > ¢* —¢*—q+eq+f—e

— €
+f—f—uw+wqw

eq—q+ f—e
romae [0
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+q_1+[eq—qq§f—€1
+1
g o)

Let

— — — — + —
T:V 6%[6(1 Qv;f ﬂﬂﬂeq q3f 6]
q q q
Then T < 0 by the Griesmer bound. Now we prove the following claim.

Claim. In the set of pairs (e, f) with0 < e <¢>—¢—3and 0 < f <
q — 1, we have the following;:

T <0 if and only if (e, f) = (0,0),(1,0), or (1,1).

Moreover, in this case T' = 0.
Proof of Claim: We prove

T=0, if (e, f)=1(0,0),(1,0), or (1,1),
T >0, otherwise.

When (e, f) = (0,0),(1,0) or (1,1), we note that "= 0. Hence we
consider the other case.
For f > 2, since 0 < e < ¢> — ¢ — 3 < ¢°, we have
f—e eq—q+f—e+eq—q+f—ew

T> +
{ q q q

_ {(f—l)?g%—l—ew >0

Now, consider the case f =0 or 1.
Assume f =1. We have eq —q+ f —e=(e—1)(¢ — 1). For e = 0,
we have T' = H—‘—i—{%—‘—l—[%—‘ =1>0. For 2 <e < g, we

have T = {%W + P“%&qﬂw + ﬂe*l;gfﬂ =0+1+1=2>0.
l—e | _

For tq+1 < e < (t+1)g with 1 < ¢ < ¢ — 2, we have {TW = -t
t< {%—‘ <t+1and [(6_1;#—‘ =1, and hence T > 0.

Finally, assume f = 0. For 2 < e < ¢—1, we get T = {_76—‘ +

{e(q*q;)ﬂ i F‘q*q;)ﬂ —04+14+41=2>0 Fortg<e<(t+1)g—1
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with 1 <t < g — 2, we have {_Tﬂ =—t,t < [e(q_q#—‘ <t+1 and
{%-‘ =1, and hence T' > 0. Thus the claim is proved.

By the claim, there remain only three possibilities for co(Hj).

If (e, f) = (0,0), then Cy N Hy is a {03 + 01,605 + 1;4, ¢}-minihyper,
which is impossible by Theorem 2.2 (c).

Assume (e, f) = (1,0). Then CoyN Hy is a {63+ 1, 02; 4, ¢}-minihyper.
By Theorem 2.2 (b), the minihyper Cy N H; consists of a 3-flat A; and
a point Pi. From co = co(H1) + Y-,y prm, co(H) — qeo(Ar), since
co(A1) = 03, we have

> co(H) = q(3+ 61 +2).
A1CH,H#H,

Hence there is a 4-flat H containing Ay with ¢o(H) > 03+ 01 + 2, which
contradicts Case 1 and Case 2.

If (e, f) = (1,1) then CoNHj is a {03, 02; 4, g}-minihyper, i.e., a 3-flat.
Then co(Hp N Hy) = 02 or 63, which is a contradiction by (3.1). O

Case 4. There is no 4-flat H with 20, + 01 < co(H) < 260, + 2q.

Proof. Suppose that there exists a 4-flat Hy with co(Hy) = 262 +
2g — f, 0 < f < q—1. For any 3-flat A in H;, by (3.4) we have
Co(A) > 2601 + 1.

Suppose that co(A) > 20; + 2 for all A C H;. Then H; is an
[n1, 5, d1]q code with ny = 04—2602—2¢+ f and dy > ¢t —2¢>—2q+ f+2,
which contradicts the Griesmer bound. Thus there is a 3-flat A in H;
with ¢o(A) = 26, + 1. Then Cp N Hy is a {202 + 2q — f,2601 + 1;4,q}-
minihyper, which contradicts Theorem 2.5. O

Case 5. There is no 4-flat H with 205 + 1 < ¢o(H) < 202 + q.

Proof. Suppose that there exists a 4-flat Hy with c¢o(Hy) = 202+q—f,
0 < f <gq-—1. For any 3-flat A in Hy, we have co(A) > 260, by (3.4).
Suppose that cg(A) > 20, + 1 for any A in Hy. Then H; corresponds
to an [n1,5,di], linear code with ny = 64 — 202 — ¢ + f and d; >
¢* — 2¢> — ¢ + f + 1, which contradicts the Griesmer bound. Thus
there exists a 3-flat A in Hy with ¢o(A) = 261, and hence Cy N Hy is
a {202 + q — f,2601;4, ¢}-minihyper. For 1 < f < ¢ — 1, by Theorem
2.4, such a minihyper Cy N H; does not exist. Thus we have f = 0 and
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CoN Hy is a {202+ q,261; 4, q}-minihyper. Let A; be a 3-flat in H; with
co(A1) = 26;. Then we have

co=co(H)+ > co(H)—qeo(4)
ALCH HAH,

=202 +q+ Z co(H) —q- 201,
A1CH,H#H,

and hence

> c(H)=q(02+ 61 +1).
A1 CH,H#H;

Thus we conclude c¢o(H) = 03+ 61+ 1 for all 4-flat H (# H;) containing
Ay, say Hy,...,Hgy1. By Theorem 2.2 (b), for 2 <i < ¢+ 1, H;NCy
consists of a plane d;, a line [; and a point Q);, respectively. Let ChNA; =
ConHiNH; =1;Um;, 2 <i<qg+1, where m; = §; N Hy is a line. Since
co(A1) = 2601 and g > 4, there exist H; and H; such that m; = m;,
2 <i < j<q+1. Then we note that §; N d; = m;. Consider the linear
span of &; and 4;, denoted by (6;,d;). Then co({d;,8;)) > 62 + ¢*. Thus
we have

co= Y colH)=qeo((6i,6))

< S colH) —albs + ),
(0i,0;)CH

and hence Z@héﬁgH co(H) > 303 + 2q — 1. Therefore, there exists a

4-flat H containing (8;,6;) with co(H) > 3¢*> + 5. However, from Case
1, 2, 3, 4, there is no 4-flat H with 203 + 6, < co(H) < 03 +260; +q — 1.
Thus we have a contradiction since ¢ > 4. ]

Step II. By Step I and (2) we conclude that
(3.5) O+ 61+ 1 <co(H) <20y for any 4-flat H in PG(5,q).
On the other hand, since Hyg N Cp is a disjoint union of a plane dy,

a line |y and a point Py, the linear span Ay = (do, Fy) is 3-flat with
co(4p) = 62 + 2. Then we have
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co=co(Ho)+ Y colH)— qeo(4o)
AoCH,H#Hy

=0+ 06 +1+ Z co(H) — q(62 +2),
AoCH,H#Hp

and hence > 5 cy g, co(H) = 203 + 3q — 3. Thus there is a 4-fla
H(# Hy) containing Ay with co(H) > 2602 + 3, which contradicts (3.5).
Thus the proof is completed. O
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