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DETERMINATION OF MINIMUM LENGTH OF SOME
LINEAR CODES

Eun Ju Cheon*

Abstract. Hamada ([8]) and Maruta ([17]) proved the minimum
length n3(6, d) = g3(6, d) + 1 for some ternary codes. In this paper
we consider such minimum length problem for q ≥ 4, and we prove
that nq(6, d) = gq(6, d) + 1 for d = q5 − q3 − q2 − 2q + e, 1 ≤ e ≤ q.
Combining this result with Theorem A in [4], we have nq(6, d) =
gq(6, d) + 1 for q5 − q3 − q2 − 2q + 1 ≤ d ≤ q5 − q3 − q2 with q ≥ 4.
Note that nq(6, d) = gq(6, d) for q5 − q3 − q2 + 1 ≤ d ≤ q5 by
Theorem 1.2.

1. Introduction

Let Fq denote the Galois field of q elements and Fn
q denote the n-

dimensional vector space over Fq, where q is a prime power. For a
vector x = (x1, . . . , xn) ∈ Fn

q , the weight of x denoted by w(x) is the
number of nonzero coordinates of x, that is, w(x) = |{i | xi 6= 0}|.

An [n, k, d]q linear code C is a k-dimensional subspace of Fn
q over

Fq with minimum distance d. One of the central problems in coding
theory is to determine optimal linear codes. This is to optimize one of
the parameters n, k and d for given the other two as follows; (1) Find
the smallest length n, denoted by nq(k, d), for which there exists an
[n, k, d]q code for given k and d. (2) Find the largest minimum distance
d, denoted by dq(n, k), for which there exists an [n, k, d]q code for given
k and n. (3) Find the largest dimension k, denoted by kq(n, d), for which
there exists an [n, k, d]q code for given n and d.
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A code of length nq(k, d) [resp. minimum distance dq(n, k), dimension
kq(n, d)] is said to be length-optimal [resp. distance-optimal, dimension-
optimal]. Note that a length-optimal code is both distance-optimal and
dimension-optimal. So we concentrate on the length-optimal codes. The
following is an important lower bound on nq(k, d) which is called the
Griesmer bound.

Theorem 1.1 ([9]). (Griesmer bound) For an [n, k, d]q linear code,

we have n ≥ gq(k, d), where gq(k, d) = d +
⌈

d
q

⌉
+

⌈
d
q2

⌉
+ · · ·+

⌈
d

qk−1

⌉
.

By Theorem 1.1, we note nq(k, d) ≥ gq(k, d) for all k and d. It is
natural to ask whether there exists a [gq(k, d), k, d]q code for given d and
k. The following theorem gives a large class of linear codes meeting the
Griesmer bound which we call Griesmer codes.

Theorem 1.2 ([9]). Let s = d d
qk−1 e and d = sqk−1−∑p

i=1 qui−1 with

k > u1 ≥ u2 ≥ · · · ≥ up and ui > ui+q−1 for 1 ≤ i ≤ p− q + 1. If

min{s+1,p}∑

i=1

ui ≤ sk,

then nq(k, d) = gq(k, d).

Theorem 1.2 provides a starting point for finding nq(k, d). For k = 1
and 2, we have nq(k, d) = gq(k, d) for all d. Thus we are interested in
k ≥ 3.

From Theorem 1.2, we have the following:

Corollary 1.3 ([5]). We have nq(k, d) = gq(k, d) for d satisfying
one of the following:

(a) qk−1 − qk−1−t − qt + 1 ≤ d ≤ qk−1 − qk−1−t

with 1 ≤ t ≤
⌊

k − 1
2

⌋
− 1 for k ≥ 5,

(b) qk−1 − qk−1−t − qt + 1 ≤ d ≤ qk−1 with t =
⌊

k − 1
2

⌋
for k ≥ 3,

where bxc denotes the largest integer less than or equal to x.

Much research on nq(k, d) has been done for small dimension k and
small q by various methods. For k = 3, 4, 5 and q = 3, 4, 5, we can find
tables of the values of nq(k, d) in [11] and [16].

To find the value of nq(k, d) for general q or k is more interesting.
For minimum distance d with qk−1 − qk−1−t − qt − sq + 1 ≤ d ≤ qk−1 −
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qk−1−t − qt − (s − 1)q for 1 ≤ t ≤ ⌊
k−1
2

⌋
and 1 ≤ s ≤ q − 1, which is

just below the values for d in Corollary 1.3, it is known that there is no
Griesmer code with
(1) t = 1 and s = 1 for q ≥ 3, k ≥ 5 in [3, 4, 13, 14, 15],
(2) t = 1 and 2 ≤ s ≤ q − 1 in [15],
(3) s = 1 and t =

⌊
k−1
2

⌋
for k ≥ 5 in [3], 2 ≤ t ≤ ⌊

k−1
2

⌋− 1 for k ≥ 7 in
[5].

Naturally we can ask the cases t ≥ 2 or s ≥ 2. When t = 2 and s = 2,
there is a result for the question for k = 5 in [2].

In this paper, we consider the case t = 2 and s = 2 for k = 6. In other
words, we consider the problem whether Griesmer codes with minimum
distance d with q5−q3−q2−2q+1 ≤ d ≤ q5−q3−q2−q exist or not for
q ≥ 4. For q = 2 or 3, we note that n2(6, d) = g2(6, d) with d = 17, 18
([6]) and n3(6, d) = g3(6, d) + 1 with d = 202, 203, 204 ([8, 17]).

As the first step to determine the exact value of nq(6, d) with d =
q5−q3−q2−2q+α, 1 ≤ α ≤ q and q ≥ 4, we need to prove the following.

Theorem A. There does not exist a [gq(6, d), 6, d]q code with d =
q5 − q3 − q2 − 2q + 1 for q ≥ 4.

In Section 3, we give a proof of Theorem A and in Section 2, we recall
some results needed to prove Theorem A.

Recall that the existence of an [n, k, d]q code with d ≥ 2 implies the
existence of an [n−1, k, d−1]q code. Therefore, by Theorem A, we have
the following.

Theorem B. For q ≥ 4, we have nq(6, d) ≥ gq(6, d) + 1 with q5 −
q3 − q2 − 2q + 1 ≤ d ≤ q5 − q3 − q2 − q.

If we let k = 6 in Theorem 16 in [3], then we have the following.

Theorem 1.4 ([3]). For q ≥ 3, there exists a [gq(6, d) + 1, 6, d]q code
for q5 − q3 − 2q2 + 1 ≤ d ≤ q5 − q3 − q2.

By Theorem B and Theorem 1.4, we conclude the next theorem.

Theorem C. For q ≥ 4, we have nq(6, d) = gq(6, d) + 1 with q5 −
q3 − q2 − 2q + 1 ≤ d ≤ q5 − q3 − q2 − q.

Finally, combining the result of [4] with Theorem C, for q ≥ 4, we
have the following:

nq(6, d) = gq(6, d) + 1 for q5 − q3 − q2 − 2q + 1 ≤ d ≤ q5 − q3 − q2.
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2. Preliminaries

Let PG(r, q) be the r-dimensional projective space over Fq and let θr

be the number of points in PG(r, q). Then θr = qr +qr−1 + · · ·+q+1 for
a positive integer r. For convenience, we let θ0 = 1 and θr = 0 if r < 0.
We call a subspace of dimension j in PG(r, q) a j-flat. In particular, we
call a subspace of dimension 0 [resp. 1, 2, r − 1] a point [resp. a line, a
plane, a hyperplane].

Let C be a projective [n, k, d]q linear code with a generator matrix of
G. Then no two columns of G are linearly dependent. Each column of
G can be considered as a point of PG(k− 1, q). Let C1 be the set of all
columns of G and let C0 = Cc

1, the complement of C1 in PG(k − 1, q).
For a subset S in PG(k − 1, q), we use the following notation;

c0(S) = |S ∩ C0|, c(S) = |S ∩ C1| and c0 = |C0|.
In particular, for a projective [n, 6, d]q linear code C, we have n =

|C1|, c0 = θ5 − n and d = n−max{c(H) | H is a 4-flat in PG(5, q)}.
Now we recall theorems which play an important role to prove The-

orem A.
For a subset S in the r-dimensional affine space AG(r, q) over Fq, S

is a t-fold blocking set with respect to hyperplanes if every hyperplane
in AG(r, q) meets S in at least t points.

Theorem 2.1 ([1]). A t-fold blocking set S with respect to hyper-
planes in AG(r, q) satisfies

|S| ≥ (r + t− 1)(q − 1) + 1.

A subset F of PG(r, q) with |F | = f is called an {f, t; r, q}-minihyper
if every hyperplane meets F in at least t points. Hamada ([7]) showed
that for k ≥ 3 and 1 ≤ d < qk−1, there is a one to one correspondence
between the set of all nonequivalent [n, k, d]q Griesmer codes and the
set of all {θk−1−n, θk−2−n + d; k− 1, q}-minihypers. Thus an [n, 6, d]q
Griesmer code C with d < q5 corresponds to a {θ5 − n, θ4 − n + d; 5, q}-
minihyper. The following is a characterization of some minihypers.

Theorem 2.2 ([7]). Let λ1, λ2, . . . , λm be positive integers with 1 ≤
λ1 < λ2 < · · · < λm ≤ t and 1 ≤ m ≤ t.

(a) In the case m = 1, S is a {θλ1 , θλ1−1; t, q}-minihyper if and only if
S is a λ1-flat in PG(t, q).

(b) In the case m ≥ 2 and t ≥ λm+λm−1+1, S is a {∑m
i=1 θλi ,

∑m
i=1 θλi−1;

t, q}-minihyper if and only if S consists of disjoint union of λi-flats
in PG(t, q).
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(c) In the case m ≥ 2 and t ≤ λm + λm−1, there is no {∑m
i=1 θλi ,∑m

i=1 θλi−1; t, q}-minihyper.

Let mr,q(s) denote the minimum value of f for which an {f, θr−2 +
s; r, q}-minihyper exists for r ≥ 3 and 1 ≤ s ≤ q− 1. If we let r = 4 and
s = 1 or s = 2 in Theorem 2.4 in [15], then we have the following.

Theorem 2.3 ([15]). For q ≥ 3, we have

(a) m4,q(1) ≥ θ3 + θ1 + q,
(b) m4,q(2) ≥ θ3 + 2θ1 + q.

In [14], Maruta proved the nonexistence of a [gq(5, d), 5, d]q code with
q4 − 2q2 − q + 1 ≤ d ≤ q4 − 2q2 for q ≥ 3. Landjev and Maruta [resp.
Cheon et al.] proved the nonexistence of a [gq(5, d), 5, d]q code with
q4 − 2q2 − 2q + 1 ≤ d ≤ q4 − 2q2 − q for q = 4 [resp. for q ≥ 5] in
[12] [resp. [2]]. Since those two intervals of d-values are consecutive, we
conclude that there does not exist a Griesmer code with q4−2q2−2q+1 ≤
d ≤ q4−2q2 for q ≥ 4. Here we express the above results with the notion
of minihyper respectively.

Theorem 2.4 ([14]). For q ≥ 3 and 0 ≤ e ≤ q − 1, there does not
exist a {2θ2 + e, 2θ1; 4, q}-minihyper.

Theorem 2.5 ([2, 12]). For q ≥ 4 and 0 ≤ e ≤ q − 1, there does not
exist a {2θ2 + θ1 + e, 2θ1 + 1; 4, q}-minihyper.

For a Griesmer code, the following holds:

Theorem 2.6 ([14]). Let C be a [gq(k, d), k, d]q code and let γj :=∑j
i=0

⌈
d

qk−1−i

⌉
for 0 ≤ j ≤ k − 2. Then there exist j-flats ∆j with

c(∆j) = γj such that ∆0 ⊆ ∆1 ⊆ · · · ⊆ ∆k−2 and that ∆j gives a
[γj , j + 1, γj − γj−1] Griesmer code for 1 ≤ j ≤ k − 2.

If we let t = 1 in Theorem 7 in [10], then we have the following.

Theorem 2.7. For an integer r ≥ 0 and q ≥ r + 1, let S be a subset
in PG(m, q) with |S| ≤ θm−1 + rθm−3. If |S ∩ l| ≥ 1 for any line l in
PG(m, q) then S contains a hyperplane.

3. Main theorem

In this section, we prove Theorem A. On the contrary, we assume that
for q ≥ 4, there exists a [gq(6, d), 6, d]q code C with d = q5−q3−q2−2q+1.
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Since C is a Griesmer code, by Theorem 2.6, we have the following:

c0 = θ3 + θ2 + 2q,

c0(H) ≥ θ2 + θ1 + 1 for any 4-flat H in PG(5, q),

c0(∆) ≥ θ1 + 1 for any 3-flat ∆ in PG(5, q),

c0(δ) ≥ 1 for any 2-flat δ in PG(5, q).

Let H0 be a 4-flat in PG(5, q) with c0(H0) = θ2 + θ1 + 1. Then H0

is a {θ2 + θ1 + 1, θ1 + 1; 4, q}-minihyper. By Theorem 2.2 (b), we note
that H0 ∩ C0 is a disjoint union of a plane δ0, a line l0 and a point P0.
For any 3-flat ∆ in H0, we have

(3.1) c0(∆) = θ2 + 2, θ2 + 1, 2θ1 + 1, 2θ1, θ1 + 2, or θ1 + 1.

For any 4-flat H in PG(5, q), we have c0(H0 ∩H) ≤ θ2 + 2 by (3.1).
Since c0(H) ≥ θ2 + θ1 + 1 for any 4-flat H, we have

c0 = c0(H) +
∑

H0∩H⊆H′ 6=H

c0(H ′)− qc0(H0 ∩H)

≥ c0(H) + q(θ2 + θ1 + 1)− q(θ2 + 2)

= c0(H) + q2,

which implies c0(H) ≤ θ3 + 2θ1 + q − 1.
Therefore, we conclude that

(3.2) θ2+θ1+1 ≤ c0(H) ≤ θ3+2θ1+q−1 for any 4-flat H in PG(5, q).

Now we will derive a contradiction in two steps as follows: In Step I,
we prove that there is no 4-flat H such that

(3.3) 2θ2 + 1 ≤ c0(H) ≤ θ3 + 2θ2 + q − 1.

Then, by (3.2), we conclude that θ2 +θ1 +1 ≤ c0(H) ≤ 2θ2 for any 4-flat
H in PG(5, q). In Step II, we will prove that it is impossible.

Step I. We divide the interval (3.3) into five small intervals, which we
refer to as Case 1, . . . , Case 5 and we prove the nonexistence of a 4-flat
H with c0(H) belonging to each small interval.

When we prove them we use the following computation frequently:
For a 4-flat H1 in PG(5, q), let ∆ be a 3-flat in H1. Then we have

c0 = c0(H1) +
∑

∆⊆H 6=H1

c0(H)− qc0(∆)

≥ c0(H1) + q(θ2 + θ1 + 1)− qc0(∆),
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and hence

(3.4) c0(∆) ≥ c0(H1)− c0

q
+ θ2 + θ1 + 1.

Case 1. There is no 4-flat H with θ3 + 2θ1 ≤ c0(H) ≤ θ3 + 2θ1 + q− 1.

Proof. Suppose that there exists a 4-flat H1 with c0(H1) = θ3 +2θ1 +
q − 1− f , 0 ≤ f ≤ q − 1. Let ∆ be a 3-flat in H1. Using (3.4), we have
c0(∆) ≥ θ2 + 2− f

q . Since 0 ≤ f ≤ q − 1, we have

c0(∆) ≥ θ2 + 2 for all 3-flat ∆ ⊂ H1.

Furthermore, if we let ∆ = H0 ∩ H1, then c0(∆) = θ2 + 2 since
c0(H0 ∩H1) ≤ θ2 + 2 by (3.1). Thus C0 ∩H1 is a {θ3 + 2θ1 + q − 1 −
f, θ2 + 2; 4, q}-minihyper, which contradicts Theorem 2.3 (b).

Case 2. There is no 4-flat H with θ3 + θ1 + 1 ≤ c0(H) ≤ θ3 + θ1 + q.

Proof. Suppose that there exists a 4-flat H1 with c0(H1) = θ3 + θ1 +
q − f , 0 ≤ f ≤ q − 1. Let ∆ be a 3-flat in H1. Using (3.4), we have
c0(∆) ≥ θ2 + 1 since 0 ≤ f ≤ q − 1.

Suppose that c0(∆) ≥ θ2 + 2 for all 3-flat ∆ ⊆ H1. By Theorem 2.3
(b), we have c0(H1) ≥ θ3 + 2θ1 + q which is a contradiction. Thus there
exists a 3-flat ∆ with c0(∆) = θ2 + 1. Then C0 ∩H1 is a {θ3 + θ1 + q −
f, θ2 + 1; 4, q}-minihyper. By Theorem 2.3 (a), we obtain f = 0, that
is, C0 ∩H1 is a {θ3 + θ1 + q, θ2 + 1; 4, q}-minihyper. Here, we prove the
following claim.

Claim. C0 ∩H1 contains a 3-flat.
Proof of Claim: To prove Claim, it suffices to prove that for any line

l in H1, | (C0 ∩H1)∩ l| ≥ 1 by Theorem 2.7. Suppose that there is a line
l1 in H1 with | (C0 ∩H1)∩ l1| = 0. Consider a 3-flat ∆ in H1 containing
l1. Then there is a 3-flat ∆′ containing l1 with | (C0 ∩H1)∩∆′| = θ2 +1
since c0(H1) = θ3 + θ1 + q and

c0(H1) =
1
θ1


 ∑

l1⊂∆⊂H1

| (C0 ∩H1) ∩∆|

 <

1
θ1
· θ2 · (θ2 + 2).

On the other hand, we have

c0 = c0(H1) +
∑

∆′⊆H,H 6=H1

c0(H)− qc0(∆′)

≥ c0(H1) + q(θ2 + θ1 + 1)− q(θ2 + 1) = θ3 + θ2 + 2q.
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Thus we note c0(H) = θ2 + θ1 +1 for any 4-flat H(6= H1) containing ∆′.
Let H2 be a 4-flat containing ∆′ with c0(H2) = θ2 + θ1 + 1. Then by
Theorem 2.2 (b), C0 ∩H2 consists of a plane, a line and a point. Since
| (C0 ∩H2)∩H1| = | (C0 ∩H1)∩∆′| = θ2+1, it holds that (C0 ∩H1)∩∆′
consists of a plane δ′ and a point P ′. Then | (C0 ∩H1)∩l1| ≥ |δ′∩l1| ≥ 1,
which is a contradiction to the choice of l1. Thus Claim is proved.

By Claim, C0∩H1 contains a 3-flat, say ∆1. Let S = (C0 ∩H1)−∆1.
We note |S| = θ1 + q. On the other hand, since c0(∆) ≥ θ2 + 1 for any
3-flat ∆ in H1, |S ∩ ∆| ≥ 1 for any 3-flat ∆ 6= ∆1 in H1. Thus S
can be considered as 1-fold blocking set with respect to hyperplanes in
AG(4, q). By Theorem 2.1, we have |S| ≥ (4+1− 1)(q− 1)+1 = 4q− 3
which is a contradiction since q ≥ 4.

Case 3. There is no 4-flat H with 2θ2 + θ1 + q ≤ c0(H) ≤ θ3 + θ1.

Proof. Suppose that there exists a 4-flat H1 with c0(H1) = θ3 +
θ1 − eq − f , 0 ≤ f ≤ q − 1, 0 ≤ e ≤ q2 − q − 3. By (3.4), we have
c0(∆) ≥ θ2− e. Suppose there is a 3-flat ∆1 with c0(∆1) = θ2− e. Since
0 ≤ e ≤ q2 − q − 3, we have 2θ1 + 2 ≤ c0(∆1) ≤ θ2. By (3.1), we note
that c0(H) ≥ θ2 + θ1 + 2 for any 4-flat H containing ∆1. Thus we have

c0 = c0(H1) +
∑

∆1⊆H,H 6=H1

c0(H)− qc0(∆1)

≥ c0(H1) + q(θ2 + θ1 + 2)− q(θ2 − e) = θ3 + θ2 + 2q + θ1 − (f + 1),

which is a contradiction since 0 ≤ f ≤ q − 1. Thus c0(∆) ≥ θ2 − e + 1
for any 3-flat ∆ in H1.

On the other hand, H1 corresponds to an [n1, 5, d1]q linear code with
n1 = θ4−c0(H1) = θ4−θ3−θ1 +eq+f and d1 ≥ q4−q3−q+eq+f −e.

Applying the Griesmer bound, we have

gq(5, d1) ≥ q4 − q3 − q + eq + f − e

+ q3 − q2 − 1 + e +
⌈

f − e

q

⌉

+ q2 − q +
⌈

eq − q + f − e

q2

⌉
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+ q − 1 +
⌈

eq − q + f − e

q3

⌉

+ 1

≥ n1 +
⌈

f − e

q

⌉
+

⌈
eq − q + f − e

q2

⌉
+

⌈
eq − q + f − e

q3

⌉
.

Let

T =
⌈

f − e

q

⌉
+

⌈
eq − q + f − e

q2

⌉
+

⌈
eq − q + f − e

q3

⌉
.

Then T ≤ 0 by the Griesmer bound. Now we prove the following claim.

Claim. In the set of pairs (e, f) with 0 ≤ e ≤ q2− q− 3 and 0 ≤ f ≤
q − 1, we have the following:

T ≤ 0 if and only if (e, f) = (0, 0), (1, 0), or (1, 1).

Moreover, in this case T = 0.
Proof of Claim: We prove

{
T = 0, if (e, f) = (0, 0), (1, 0), or (1, 1),
T > 0, otherwise.

When (e, f) = (0, 0), (1, 0) or (1, 1), we note that T = 0. Hence we
consider the other case.

For f ≥ 2, since 0 ≤ e ≤ q2 − q − 3 < q2, we have

T ≥
⌈

f − e

q
+

eq − q + f − e

q2
+

eq − q + f − e

q3

⌉

=
⌈

(f − 1)θ2 + 1− e

q3

⌉
> 0.

Now, consider the case f = 0 or 1.
Assume f = 1. We have eq − q + f − e = (e − 1)(q − 1). For e = 0,

we have T =
⌈

1
q

⌉
+

⌈−(q−1)
q2

⌉
+

⌈−(q−1)
q3

⌉
= 1 > 0. For 2 ≤ e ≤ q, we

have T =
⌈

1−e
q

⌉
+

⌈
(e−1)(q−1)

q2

⌉
+

⌈
(e−1)(q−1)

q3

⌉
= 0 + 1 + 1 = 2 > 0.

For tq + 1 ≤ e ≤ (t + 1)q with 1 ≤ t ≤ q − 2, we have
⌈

1−e
q

⌉
= −t,

t ≤
⌈

(e−1)(q−1)
q2

⌉
≤ t + 1 and

⌈
(e−1)(q−1)

q3

⌉
= 1, and hence T > 0.

Finally, assume f = 0. For 2 ≤ e ≤ q − 1, we get T =
⌈
−e
q

⌉
+⌈

e(q−1)−q
q2

⌉
+

⌈
e(q−1)−q

q3

⌉
= 0 + 1 + 1 = 2 > 0. For tq ≤ e ≤ (t + 1)q − 1
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with 1 ≤ t ≤ q − 2, we have
⌈
−e
q

⌉
= −t, t ≤

⌈
e(q−1)−q

q2

⌉
≤ t + 1 and⌈

e(q−1)−q
q3

⌉
= 1, and hence T > 0. Thus the claim is proved.

By the claim, there remain only three possibilities for c0(H1).
If (e, f) = (0, 0), then C0 ∩H1 is a {θ3 + θ1, θ2 + 1; 4, q}-minihyper,

which is impossible by Theorem 2.2 (c).
Assume (e, f) = (1, 0). Then C0∩H1 is a {θ3 +1, θ2; 4, q}-minihyper.

By Theorem 2.2 (b), the minihyper C0 ∩H1 consists of a 3-flat ∆1 and
a point P1. From c0 = c0(H1) +

∑
∆1⊆H,H 6=H1

c0(H) − qc0(∆1), since
c0(∆1) = θ3, we have

∑

∆1⊆H,H 6=H1

c0(H) = q(θ3 + θ1 + 2).

Hence there is a 4-flat H containing ∆1 with c0(H) ≥ θ3 + θ1 +2, which
contradicts Case 1 and Case 2.

If (e, f) = (1, 1) then C0∩H1 is a {θ3, θ2; 4, q}-minihyper, i.e., a 3-flat.
Then c0(H0 ∩H1) = θ2 or θ3, which is a contradiction by (3.1).

Case 4. There is no 4-flat H with 2θ2 + θ1 ≤ c0(H) ≤ 2θ2 + 2q.

Proof. Suppose that there exists a 4-flat H1 with c0(H1) = 2θ2 +
2q − f , 0 ≤ f ≤ q − 1. For any 3-flat ∆ in H1, by (3.4) we have
c0(∆) ≥ 2θ1 + 1.

Suppose that c0(∆) ≥ 2θ1 + 2 for all ∆ ⊆ H1. Then H1 is an
[n1, 5, d1]q code with n1 = θ4−2θ2−2q+f and d1 ≥ q4−2q2−2q+f +2,
which contradicts the Griesmer bound. Thus there is a 3-flat ∆ in H1

with c0(∆) = 2θ1 + 1. Then C0 ∩ H1 is a {2θ2 + 2q − f, 2θ1 + 1; 4, q}-
minihyper, which contradicts Theorem 2.5.

Case 5. There is no 4-flat H with 2θ2 + 1 ≤ c0(H) ≤ 2θ2 + q.

Proof. Suppose that there exists a 4-flat H1 with c0(H1) = 2θ2+q−f ,
0 ≤ f ≤ q − 1. For any 3-flat ∆ in H1, we have c0(∆) ≥ 2θ1 by (3.4).
Suppose that c0(∆) ≥ 2θ1 + 1 for any ∆ in H1. Then H1 corresponds
to an [n1, 5, d1]q linear code with n1 = θ4 − 2θ2 − q + f and d1 ≥
q4 − 2q2 − q + f + 1, which contradicts the Griesmer bound. Thus
there exists a 3-flat ∆ in H1 with c0(∆) = 2θ1, and hence C0 ∩ H1 is
a {2θ2 + q − f, 2θ1; 4, q}-minihyper. For 1 ≤ f ≤ q − 1, by Theorem
2.4, such a minihyper C0 ∩H1 does not exist. Thus we have f = 0 and
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C0∩H1 is a {2θ2 + q, 2θ1; 4, q}-minihyper. Let ∆1 be a 3-flat in H1 with
c0(∆1) = 2θ1. Then we have

c0 = c0(H1) +
∑

∆1⊆H,H 6=H1

c0(H)− qc0(∆1)

= 2θ2 + q +
∑

∆1⊆H,H 6=H1

c0(H)− q · 2θ1,

and hence ∑

∆1⊆H,H 6=H1

c0(H) = q(θ2 + θ1 + 1).

Thus we conclude c0(H) = θ2 + θ1 +1 for all 4-flat H ( 6= H1) containing
∆1, say H2, . . . , Hq+1. By Theorem 2.2 (b), for 2 ≤ i ≤ q + 1, Hi ∩ C0

consists of a plane δi, a line li and a point Qi, respectively. Let C0∩∆1 =
C0∩H1∩Hi = li∪mi, 2 ≤ i ≤ q +1, where mi = δi∩H1 is a line. Since
c0(∆1) = 2θ1 and q ≥ 4, there exist Hi and Hj such that mi = mj ,
2 ≤ i < j ≤ q + 1. Then we note that δi ∩ δj = mi. Consider the linear
span of δi and δj , denoted by 〈δi, δj〉. Then c0(〈δi, δj〉) ≥ θ2 + q2. Thus
we have

c0 =
∑

〈δi,δj〉⊆H

c0(H)− qc0(〈δi, δj〉)

≤
∑

〈δi,δj〉⊆H

c0(H)− q(θ2 + q2),

and hence
∑
〈δi,δj〉⊆H c0(H) ≥ 3θ3 + 2q − 1. Therefore, there exists a

4-flat H containing 〈δi, δj〉 with c0(H) ≥ 3q2 + 5. However, from Case
1, 2, 3, 4, there is no 4-flat H with 2θ2 + θ1 ≤ c0(H) ≤ θ3 + 2θ1 + q− 1.
Thus we have a contradiction since q ≥ 4.

Step II. By Step I and (2) we conclude that

(3.5) θ2 + θ1 + 1 ≤ c0(H) ≤ 2θ2 for any 4-flat H in PG(5, q).

On the other hand, since H0 ∩ C0 is a disjoint union of a plane δ0,
a line l0 and a point P0, the linear span ∆0 = 〈δ0, P0〉 is 3-flat with
c0(∆0) = θ2 + 2. Then we have
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c0 = c0(H0) +
∑

∆0⊆H,H 6=H0

c0(H)− qc0(∆0)

= θ2 + θ1 + 1 +
∑

∆0⊆H,H 6=H0

c0(H)− q(θ2 + 2),

and hence
∑

∆0⊆H,H 6=H0
c0(H) = 2θ3 + 3q − 3. Thus there is a 4-flat

H( 6= H0) containing ∆0 with c0(H) ≥ 2θ2 + 3, which contradicts (3.5).
Thus the proof is completed.
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