LOGARITHMIC COMPOSITION INEQUALITY IN BESOV SPACES

Young Ja Park*

Abstract

A logarithmic composition inequality in Besov spaces is derived which generalizes Vishik's inequality:

$$
\|f \circ g\|_{B_{p, 1}^{s}} \lesssim\left(1+\log \left(\|\nabla g\|_{\mathbf{L}^{\infty}}\left\|\nabla g^{-1}\right\|_{\mathbf{L}^{\infty}}\right)\right)\|f\|_{B_{p, 1}^{s}}
$$

where g is a volume-preserving diffeomorphism on \mathbb{R}^{n}.

1. The main discussion

M. Vishik[6] derived a logarithmic inequality in order to prove the global in time vorticity existence of the 2-D Euler equations in critical Besov spaces $B_{p, 1}^{s}$ with $s p=2$. It can be explicitly displayed as follows: for a volume-preserving bi-Lipschitz homeomorphism $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $f \in B_{\infty, 1}^{0}\left(\mathbb{R}^{n}\right)$, we have $f \circ g^{-1} \in B_{\infty, 1}^{0}\left(\mathbb{R}^{n}\right)$ and

$$
\left\|f \circ g^{-1}\right\|_{B_{\infty, 1}^{0}} \leq C\left(1+\log \left(\|g\|_{\text {Lip }}\left\|g^{-1}\right\|_{\text {Lip }}\right)\right)\|f\|_{B_{\infty, 1}^{0}}
$$

for some constant $C=C(n)$ independent of f, g and

$$
\|g\|_{\text {Lip }}:=\sup _{x \neq x^{\prime}} \frac{\left|g(x)-g\left(x^{\prime}\right)\right|}{\left|x-x^{\prime}\right|}
$$

D. Chae later discussed a similar result on Triebel-Lizorkin spaces[1]. This paper generalizes Vishik's inequality on $B_{\infty, 1}^{0}\left(\mathbb{R}^{n}\right)$ to more general Besov spaces $B_{p, 1}^{s}\left(\mathbb{R}^{n}\right)$. Here is the main result:

THEOREM 1.1. Let $f \in B_{p, 1}^{s}\left(\mathbb{R}^{n}\right)$ with $1 \leq p \leq \infty$ and $|s|<1$. Suppose $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a volume-preserving diffeomorphism belonging to (homogeneous) Sobolev space $\dot{W}^{1, \infty}\left(\mathbb{R}^{n}\right)$. Then $f \circ g \in B_{p, 1}^{s}\left(\mathbb{R}^{n}\right)$ and

$$
\|f \circ g\|_{B_{p, 1}^{s}} \lesssim\left(1+\log \left(\|\nabla g\|_{\mathbf{L}^{\infty}}\left\|\nabla g^{-1}\right\|_{\mathbf{L}^{\infty}}\right)\right)\|f\|_{B_{p, 1}^{s}}
$$

It is worth while pointing out that this result on Besov spaces can be discussed in general Triebel-Lizorkin spaces and that some other types of estimates for composition mapping can be found in [5](see page 209).

One of the typical examples of the volume-preserving diffeomorphisms g in Theorem 1.1 is the particle trajectory mapping $X(\cdot, t)$ which is often discussed in the theory of fluid mechanics. In fact, if $u(\cdot, t)$ is a divergence free vector field and $\{X(x, t)\}$ is the solution of the ordinary differential equation:

$$
\left\{\begin{align*}
\frac{\partial}{\partial t} X(x, t) & =u(X(x, t), t) \tag{1.1}\\
X(x, 0) & =x
\end{align*}\right.
$$

then it can be noted that $X(\cdot, t)$ is a volume-preserving diffeomorphism. Theorem 1.1 can be applied to the 2-D vorticity equation corresponding to the incompressible Euler equations given by

$$
\begin{equation*}
\frac{\partial}{\partial t} \omega+(u, \nabla) \omega=0 \tag{1.2}
\end{equation*}
$$

where $\omega:=$ curl u with the initial vorticity $\omega_{0}:=$ curl u_{0}. It is wellknown that the solution $\omega(x, t)$ of the 2-D vorticity equation can be represented by

$$
\begin{equation*}
\omega(x, t)=\omega_{0}\left(X^{-1}(x, t)\right), \quad x \in \mathbb{R}^{2} \tag{1.3}
\end{equation*}
$$

Therefore by virtue of Theorem 1.1, it can be said that

$$
\|\omega(t)\|_{B_{p, 1}^{s}} \lesssim\left(1+\log \left(\left\|\nabla_{x} X(\cdot, t)\right\|_{L^{\infty}}\left\|\nabla_{x} X^{-1}(\cdot, t)\right\|_{L^{\infty}}\right)\right)\left\|\omega_{0}\right\|_{B_{p, 1}^{s}}
$$

Here are some notations which will be used throughout this paper. Let $\mathcal{S}\left(\mathbb{R}^{n}\right)$ be the Schwartz class of rapidly decreasing functions. Take a nonnegative radial function $\chi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ satisfying supp $\chi \subset\left\{\xi \in \mathbb{R}^{n}\right.$: $\left.|\xi| \leq \frac{5}{6}\right\}$, and $\chi=1$ for $|\xi| \leq \frac{3}{5}$. Set $h_{j}(\xi):=\chi\left(2^{-j-1} \xi\right)-\chi\left(2^{-j} \xi\right)$, and it can be easily seen that

$$
\chi(\xi)+\sum_{j=0}^{\infty} h_{j}(\xi)=1 \text { for } \xi \in \mathbb{R}^{n}
$$

Let φ_{j} and Φ be functions defined by $\varphi_{j}:=\mathcal{F}^{-1}\left(h_{j}\right), j \geq 0$ and $\Phi:=$ $\mathcal{F}^{-1}(\chi)$, where \mathcal{F} represents the Fourier transform on \mathbb{R}^{n} defined by

$$
\mathcal{F}(f)(\xi)=\hat{f}(\xi)=\int_{\mathbb{R}^{n}} e^{-i x \cdot \xi} f(x) d x
$$

Note that φ_{j} is a mollifier of φ_{0}, that is, $\varphi_{j}(x):=2^{j n} \varphi_{0}\left(2^{j} x\right)\left(\right.$ or $\hat{\varphi}_{j}(\xi)=$ $\left.\hat{\varphi}\left(2^{-j} \xi\right)\right)$. One can readily check that

$$
\Phi(x)+\sum_{j=0}^{k-1} \varphi_{j}(x)=2^{k n} \Phi\left(2^{k} x\right) \text { for } k \geq 1 .
$$

For $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, denote $\Delta_{j} f \equiv h_{j}(D) f=\varphi_{j} * f$ if $j \geq 0, \Delta_{-1} f \equiv$ $\Phi * f$ and $\Delta_{j} f=0$ if $j \leq-2$. The partial sums are also defined: $S_{k} f:=\sum_{j=-\infty}^{k} \Delta_{j} f$ for $k \in \mathbb{Z}$. Assume $s \in \mathbb{R}$, and $1 \leq p, q \leq \infty$. The Besov spaces $B_{p, q}^{s}\left(\mathbb{R}^{n}\right)$ are defined by

$$
f \in B_{p, q}^{s}\left(\mathbb{R}^{n}\right) \Leftrightarrow\left\{\left\|2^{j s} \Delta_{j} f\right\|_{L^{p}}\right\}_{j \in \mathbb{Z}} \in l^{q} .
$$

Notation Throughout this paper, the notation $X \lesssim Y$ means that $X \leq C Y$, where C is a fixed but unspecified constant. Unless explicitly stated otherwise, C may depend on the dimension n and various other parameters such as exponents, but not on the functions or variables $\left(u, v, f, g, x_{i}, \cdots\right)$ involved.

2. The proof

Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a volume-preserving diffeomorphism with $g(x)=$ $\left(g_{1}(x), g_{2}(x), \cdots, g_{n}(x)\right)$ and $f \in B_{p, q}^{s}\left(\mathbb{R}^{n}\right)$. Then f can be written as

$$
f=\sum_{m=-1}^{\infty} \Delta_{m} f
$$

By plugging this representation into the definition of the Besov space $B_{p, q}^{s}\left(\mathbb{R}^{n}\right)$, we have

$$
\begin{aligned}
\|f \circ g\|_{B_{p, 1}^{s}} & \leq \sum_{j=-1}^{\infty} \sum_{m=-1}^{\infty} 2^{j s}\left\|\Delta_{j}\left(\Delta_{m} f\right) \circ g\right\|_{L^{p}} \\
& =\sum_{m=-1}^{\infty} \sum_{j=-1}^{\infty} 2^{j s}\left\|\Delta_{j}\left(\Delta_{m} f\right) \circ g\right\|_{L^{p}}
\end{aligned}
$$

Choose arbitrary $N \geq 1$ (the explicit choice will be made later) and consider three cases: $j-m>N, m-j>N$, and $|m-j| \leq N$ to get

$$
\|f \circ g\|_{B_{p, 1}^{s}} \leq \sum_{m=-1}^{\infty}\left(\sum_{j<m-N}+\sum_{j>m+N}+\sum_{|j-m| \leq N}\right) 2^{j s}\left\|\Delta_{j}\left(\left(\Delta_{m} f\right) \circ g\right)\right\|_{L^{p}}
$$

It suffices to estimate $\left\|\Delta_{j}\left(\left(\Delta_{m} f\right) \circ g\right)\right\|_{L^{p}}$. The following partition of $\hat{\varphi}$ can be used:

$$
\begin{equation*}
\hat{\varphi}(\xi)=\sum_{k=1}^{n} i \xi_{k} \hat{\theta_{k}}(\xi), \quad \hat{\theta_{k}}(\xi)=\frac{1}{i n \xi_{k}} \hat{\varphi}(\xi) \tag{2.1}
\end{equation*}
$$

Here $\hat{\varphi}(\xi) \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ and $\operatorname{supp} \hat{\theta}_{k} \subset\left\{\xi \in \mathbb{R}^{n}\left|\frac{3}{5} \leq|\xi| \leq \frac{5}{3}\right\}\right.$ for $k=$ $1,2, \cdots, n$. For any $f \in S^{\prime}\left(\mathbb{R}^{n}\right)$ and $j \geq 0$, we define

$$
\tilde{\Delta}_{j k} f=\hat{\theta_{k}}\left(2^{-j} D\right) f=2^{j n} \theta_{k}\left(2^{j} \cdot\right) * f, \text { for } k=1,2, \cdots, n .
$$

Then (2.1) implies that

$$
\Delta_{j}=2^{-j} \sum_{k=1}^{n} \partial_{k} \circ \tilde{\Delta}_{j k}, \quad j \geq 0
$$

which is essential in the following proof.
We now look at the three cases separately. In case of $m>N+j$, we have

$$
\begin{aligned}
& \Delta_{j}\left(\left(\Delta_{m} f\right) \circ g\right)(x) \\
& =2^{-m} \sum_{k=1}^{n} \Delta_{j}\left(\partial_{k}\left(\Delta_{m k} f\right) \circ g\right)(x) \\
& =2^{n j-m} \sum_{k=1}^{n} \int_{\mathbb{R}^{n}} \varphi\left(2^{j}(x-y)\right)\left(\partial_{k} \tilde{\Delta}_{m k} f\right)(g(y)) d y \\
& =2^{n j-m} \sum_{k=1}^{n} \int_{\mathbb{R}^{n}} \varphi\left(2^{j}\left(x-g^{-1}(z)\right)\right)\left(\partial_{k} \tilde{\Delta}_{m k} f\right)(z) d z \\
& =-2^{(j-m)+n j} \sum_{k, l=1}^{n} \int_{\mathbb{R}^{n}} \partial_{z_{l}} \varphi\left(2^{j}\left(x-g^{-1}(z)\right)\right) \tilde{\Delta}_{m k} f(z) \partial_{z_{l}} g_{l}^{-1}(z) d z .
\end{aligned}
$$

From this we get that

$$
\left\|\Delta_{j}\left(\left(\Delta_{m} f\right) \circ g\right)\right\|_{L^{p}} \lesssim 2^{j-m} \sum_{k=1}^{n}\left\|\tilde{\Delta}_{m k} f\right\|_{L^{p}}\left\|\nabla g^{-1}\right\|_{L^{\infty}},
$$

or we get

$$
\begin{align*}
& 2^{j s}\left\|\Delta_{j}\left(\left(\Delta_{m} f\right) \circ g\right)\right\|_{L^{p}} \\
& \quad \lesssim 2^{(j-m)(s+1)}\left(\sum_{k=1}^{n} 2^{m s}\left\|\tilde{\Delta}_{m k} f\right\|_{L^{p}}\right)\left\|\nabla g^{-1}\right\|_{L^{\infty}} \tag{2.2}
\end{align*}
$$

For the case of $m<j-N$, we can write

$$
\begin{aligned}
& \Delta_{j}\left(\left(\Delta_{m} f\right) \circ g\right)(x) \\
& =2^{(n-1) j} \sum_{k=1}^{n} \int_{\mathbb{R}^{n}} \partial_{x_{k}} \theta_{k}\left(2^{j}(x-y)\right)\left(\Delta_{m} f\right)(g(y)) d y \\
& =2^{(n-1) j} \sum_{k=1}^{n} \int_{\mathbb{R}^{n}} \theta_{k}\left(2^{j}(x-y)\right) \partial_{k}\left(\left(\Delta_{m} f\right)(g(y))\right) d y \\
& =2^{(m-j)+n j} \sum_{k, l=1}^{n} \int_{\mathbb{R}^{n}} \theta_{k}\left(2^{j}(x-y)\right)\left(\Delta_{m} \partial_{l} f(g(y))\right) \partial_{k} g_{l}(y) d y
\end{aligned}
$$

Therefore, if $j-m>N$, then we get

$$
\begin{aligned}
\left\|\Delta_{j}\left(\left(\Delta_{m} f\right) \circ g\right)\right\|_{L^{p}} & \lesssim 2^{-j}\left\|\nabla \Delta_{m} f\right\|_{L^{p}}\|\nabla g\|_{L^{\infty}} \\
& \lesssim 2^{m-j}\left\|\Delta_{m} f\right\|_{L^{p}}\|\nabla g\|_{L^{\infty}}
\end{aligned}
$$

Hence we obtain

$$
\begin{equation*}
2^{j s}\left\|\Delta_{j}\left(\left(\Delta_{m} f\right) \circ g\right)\right\|_{L^{p}} \lesssim 2^{(m-j)(1-s)}\left(2^{m s}\left\|\Delta_{m} f\right\|_{L^{p}}\right)\|\nabla g\|_{L^{\infty}} \tag{2.3}
\end{equation*}
$$

Finally, for $|j-m| \leq N$, we use the integral representation

$$
\Delta_{j}\left(\left(\Delta_{m} f\right) \circ g\right)(x)=2^{n j} \int_{\mathbb{R}^{n}} \varphi\left(2^{j}(x-y)\right)\left(\Delta_{m} f\right) \circ g d y
$$

to reach to the estimate

$$
\begin{equation*}
\left\|\Delta_{j}\left(\left(\Delta_{m} f\right) \circ g\right)\right\|_{L^{p}} \lesssim\left\|\Delta_{m} f\right\|_{L^{p}} \tag{2.4}
\end{equation*}
$$

Now combine the estimates (2.2), (2.3) and (2.4) together to get:

$$
\begin{align*}
\|f \circ g\|_{B_{p, 1}^{s}} \lesssim & \left\|\nabla g^{-1}\right\|_{\mathbf{L}^{\infty}} 2^{-N(s+1)} \sum_{k=1}^{n} \sum_{m=0}^{\infty} 2^{m s}\left\|\tilde{\Delta}_{m k f}\right\|_{L^{p}} \\
& +\|\nabla g\|_{\mathbf{L}^{\infty}} 2^{-N(1-s)} \sum_{m=-1}^{\infty} 2^{m s}\left\|\Delta_{m} f\right\|_{L^{p}} \\
& +(2 N-1) \sum_{m=-1}^{\infty} 2^{m s}\left\|\Delta_{m} f\right\|_{L^{p}} \\
& \lesssim\left(2^{-N(1-s)}\|\nabla g\|_{\mathbf{L}^{\infty}}+2^{-N(1-s)}\left\|\nabla g^{-1}\right\|_{\mathbf{L}^{\infty}}+N\right)\|f\|_{B_{p, 1}^{s}} . \tag{2.5}
\end{align*}
$$

$$
N=\left[\frac{1}{1-s} \log _{2}\left(\|\nabla g\|_{\mathbf{L}^{\infty}}\left\|\nabla g^{-1}\right\|_{\mathbf{L}^{\infty}}\right)\right]+1
$$

so that inequality (2.5) leads to the statement of the theorem. Notice that $\left\|\nabla g^{ \pm 1}\right\|_{\mathbf{L}^{\infty}} \geq 1$ since $g^{ \pm 1}$ is volume preserving.

References

[1] D. Chae, On the Well-Posedness of the Euler Equations in the Triebel-Lizorkin Spaces, Comm. Pure Appl. Math. 55 (2002), 654-678.
[2] H-C Pak and E. J. Kwon, Global vorticity existence of a perfect incompressible fluid in $B_{\infty, 1}^{0}\left(\mathbb{R}^{2}\right) \cap L^{p}\left(\mathbb{R}^{2}\right)$, Journal of the Chungcheong Mathematical Society 23 (2010), 271-277.
[3] H-C Pak and Y. J. Park, Existence of solution for the Euler equations in a critical Besov space $B_{\infty, 1}^{1}\left(\mathbb{R}^{n}\right)$, Comm. Partial Diff. Eq. 29 (2004), 1149-1166.
[4] H. Triebel, Theory of Function Spaces, Birkhauser, 1983.
[5] H. Triebel, Theory of Function Spaces II, Birkhauser, 1992.
[6] M. Vishik, Hydrodynamics in Besov spaces, Arch. Rational Mech. Anal. 145 (1998), 197-214.
[7] M. Vishik, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type, Ann. Sci. Ecole Norm. Sup. (4)32 (1999), 769-812.
*
Department of Mathematics
Hoseo University
Asan 336-795, Republic of Korea
E-mail: ypark@hoseo.edu

