References
- Alivisatos, A.P. (1996), Science 271: 933. https://doi.org/10.1126/science.271.5251.933
- Baia, H.J., Zhang, Z.M., Guo, Y. and G.E. Yang, (2009), "Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris", Colloids and Surfaces B: Biointerfaces, 70, 142-146. https://doi.org/10.1016/j.colsurfb.2008.12.025
- Cunningham, D.P., Lundie, L.L. and Leon, L. (1993), "Precipitation of cadmium by Clostridium thermoaceticum", Appl. Environ. Microbiol., 59, 7-14.
- He, S., Guo, Z., Zhang, Y., Zhang, S., Wang, J. and Gu. N. (2007), "Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate", Materials Letters, 61, 3984-3987 https://doi.org/10.1016/j.matlet.2007.01.018
- Holmes, J.D., Richardson, D.J., Saed, S., Evans-Gowing, R., Russell, D.A. and Sodeau, J.R. (1997), "Cadmium-specific formation of metal sulfide 'Q-particle' by Klebsiella pneumoniae", Microbiology, 143, 2521-2530. https://doi.org/10.1099/00221287-143-8-2521
- Hosseinian, A., Mahjou, A.R. and Movahedi, M. (2010), "Using a bithiazole complex as precursor to synthesis of CdO-CdS nanocomposite via direct thermal decomposition", Int. J. Nano. Dim., 1(1), 65-76.
- Kolvin, V.L., Schlamp, M.C. and Alivisatos, A.P. (1994), "Light-emitting dlodes made from cadmium selenlde nanocrtstals and a semiconducting polymer", Letters to Nature, 370, 354-357. https://doi.org/10.1038/370354a0
- Mousavi, R.A., Akhavan Sepahy, A. and Fazeli, M.R. (2012), "Biosynthesis, purification and characterization of cadmium sulfide nanoparticles using enterobacteriaceae and their application", Proceedings Of The International Conference Nanomaterials, Applications And Properties, 1(1), 2304-1862.
- Nie, Q.L., Xu, Z.D., Yuan, Q.L. and Li, G.H. (2003), "Chemical control synthesis of CdS nanorods with different diameter", Mater. Chem. Phys., 82, 808-811. https://doi.org/10.1016/j.matchemphys.2003.07.007
- Pandian, S.R.K., Deepak, V., Kalishwaralal, K. and Gurunathan, S. (2011), "Biologically synthesized fluorescent CdS NPs encapsulated by PHB", Enzyme and Microbial Technology, 48, 319-325. https://doi.org/10.1016/j.enzmictec.2011.01.005
- Prasad, K. and Jha, A.K. (2010), "Biosynthesis of CdS nanoparticles: an improved green and rapid procedure", Journal of Colloid and Interface Science, 342, 68-72. https://doi.org/10.1016/j.jcis.2009.10.003
- Rozamond, Y., Sweeney, C., Mao, X., Gao, J.L.B., Angela, M.B., Georgiou, G. and Brent, L.I. (2004), "Bacterial biosynthesis of cadmium sulfide, nanocrystals", Chemistry and Biology, 11, 1553-1559. https://doi.org/10.1016/j.chembiol.2004.08.022
- Sanghi, R. and Verma, P. (2009), "A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus", Chemical Engineering Journal, 155, 886-891. https://doi.org/10.1016/j.cej.2009.08.006
- Sherman, R.L., Chen, Y.Y. and Ford, W.T. (2004), "Cadmium sulfide and cadmium Selenide/cadmium sulfide nanoparticles stabilized in water with poly (cysteine acrylamide)", J. Nanosci. Nanotech, 4, 1032-1038. https://doi.org/10.1166/jnn.2004.138
- Shukla, M., Kumari, S., Shukla, S. and Shukla, R.K. (2012), "Potent antibacterial activity of nano CdO synthesized via microemulsion scheme", J. Mater. Environ. Sci., 3(4), 678-685.
- Stephen, J.R., S.J. (1999). Maenaughton, Curr. Opin. Biotechnol. (10), 230.
- Whitling, J.M., Spreitzer, G. and Wright, D.W. (2000), "A combi-coated cadmium-sulfide crystallites in Candida glabrata", J. Biol. Mater., 12, 1377-1380.
- Xu, W., Wang, Y., Xu, R., Liang, S., Zhang, G. and Yin, D. (2007), "Synthesis and fluorescence spectrum analysis of CdS nanocrystals", J. Mater. Sci., 42, 6942-6945. https://doi.org/10.1007/s10853-006-1332-9
- Yang, H.S., Santra, S. and Holloway, P.H. (2005), "Synthesis and application of Mn doped II-VI semiconductor nanocrystals", J. Nanosci. Nanotech, 5, 364-1375.
- Zhua, H., Jianga, R., Xiao, L., Chang, Y., Guana, Y., Li, X. and Zengc, G. (2009), "Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation", Journal of Hazardous Materials, 169, 933-940. https://doi.org/10.1016/j.jhazmat.2009.04.037
Cited by
- Biosynthesis and Antimicrobial Activity of Semiconductor Nanoparticles against Oral Pathogens vol.2014, 2014, https://doi.org/10.1155/2014/347167
- Biological green synthesis of gold and silver nanoparticles vol.2, pp.3, 2014, https://doi.org/10.12989/anr.2014.2.3.135
- Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles vol.7, 2016, https://doi.org/10.3389/fmicb.2016.01831
- Biogenic synthesis and photocatalytic activity of CdS nanoparticles vol.4, pp.19, 2014, https://doi.org/10.1039/c3ra46221h
- Microbe-mediated synthesis of antimicrobial semiconductor nanoparticles by marine bacteria vol.4, pp.2, 2014, https://doi.org/10.1007/s40097-014-0096-z
- Microbial synthesis of chalcogenide semiconductor nanoparticles: a review vol.9, pp.1, 2016, https://doi.org/10.1111/1751-7915.12297
- Detection of environmentally hazardous pesticide in fruit and vegetable samples using gold nanoparticles vol.80, 2017, https://doi.org/10.1016/j.foodcont.2017.04.023
- Trichosporon jirovecii-mediated synthesis of cadmium sulfide nanoparticles vol.56, pp.5, 2016, https://doi.org/10.1002/jobm.201500275
- In Vitro Antibacterial Activity and Mechanism of Silver Nanoparticles against Foodborne Pathogens vol.2014, 2014, https://doi.org/10.1155/2014/581890
- In vitro bactericidal activity of biosynthesized CuS nanoparticles against UTI-causing pathogens vol.47, pp.9, 2017, https://doi.org/10.1080/24701556.2016.1241272
- Synthesis of Metallic Silver Nanoparticles by Fluconazole Drug and Gamma Rays to Inhibit the Growth of Multidrug-Resistant Microbes vol.29, pp.6, 2018, https://doi.org/10.1007/s10876-018-1411-5
- Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticles vol.8, pp.44, 2018, https://doi.org/10.1039/C8RA03961E
- Insights into Comparative Antimicrobial Efficacies of Synthetic and Organic Agents: The Case of ZnS Nanoparticles and Zingiber officinale Rosc. vol.70, pp.6, 2018, https://doi.org/10.1007/s11837-018-2816-1
- Anticancer and Antibacterial Activity of Cadmium Sulfide Nanoparticles byAspergillus niger vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/4909054
- Antimicrobial Activity of Biosynthesized Metal Nanoparticles vol.10, pp.1, 2013, https://doi.org/10.2174/2468187309666190920095734
- Escherichia coli-based synthesis of cadmium sulfide nanoparticles, characterization, antimicrobial and cytotoxicity studies vol.51, pp.3, 2020, https://doi.org/10.1007/s42770-020-00238-9
- Bioinspired synthesis of multifunctional silver nanoparticles for enhanced antimicrobial and catalytic applications with tailored SPR properties vol.17, pp.None, 2013, https://doi.org/10.1016/j.mtchem.2020.100285
- Current Research on Silver Nanoparticles: Synthesis, Characterization, and Applications vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/6687290
- Experimental design approach for ultra-fast nickel removal by novel bio-nanocomposite material vol.10, pp.1, 2021, https://doi.org/10.12989/anr.2021.10.1.077
- Silver-calcia stabilized zirconia nanocomposite coated medical grade stainless steel as potential bioimplants vol.24, pp.None, 2013, https://doi.org/10.1016/j.surfin.2021.101086
- The ability of silver-biochar green-synthesized from Citrus maxima peel to adsorb pollutant organic compounds and antibacterial activity vol.15, pp.1, 2013, https://doi.org/10.1080/17518253.2021.2015456