DOI QR코드

DOI QR Code

Biosynthesis of semiconductor nanoparticles by using sulfur reducing bacteria Serratia nematodiphila

  • Malarkodi, C. (Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences Manonmaniam Sundaranar University) ;
  • Rajeshkumar, S. (Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences Manonmaniam Sundaranar University) ;
  • Paulkumar, K. (Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences Manonmaniam Sundaranar University) ;
  • Jobitha, G. Gnana (Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences Manonmaniam Sundaranar University) ;
  • Vanaja, M. (Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences Manonmaniam Sundaranar University) ;
  • Annadurai, G. (Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences Manonmaniam Sundaranar University)
  • Received : 2013.03.28
  • Accepted : 2013.06.15
  • Published : 2013.06.25

Abstract

The synthesis of semiconductor nanoparticles is a growing research area due to the prospective applications for the development of novel technologies. In this paper we have reported the biosynthesis of Cadmium sulfide nanoparticles (CdSNPs) by reduction of cadmium sulphate solution, using the bacteria of Serratia nematodiphila. The process for the synthesis of CdS nanoparticles is fast, novel and ecofriently. Formation of the CdS nanoparticles was confirmed by surface Plasmon spectra using UV-Vis spectrophotometer and absorbance strong peak at 420 nm. The morphology of crystalline phase of nanoparticles was determined from Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy and X-ray diffraction (XRD) spectra. The average size of CdS nanoparticles was in the range of 12 nm and the observed morphology was spherical. The results indicated that the proteins, which contain amine groups, played a reducing and controlling responsibility during the formation of CdS nanoparticles in the colloidal solution. Antibacterial activity against some bacteria such as Bacillus subtilis, Klebsiella planticola. CdS nanoparticles exhibiting good bactericidal activity.

Keywords

References

  1. Alivisatos, A.P. (1996), Science 271: 933. https://doi.org/10.1126/science.271.5251.933
  2. Baia, H.J., Zhang, Z.M., Guo, Y. and G.E. Yang, (2009), "Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris", Colloids and Surfaces B: Biointerfaces, 70, 142-146. https://doi.org/10.1016/j.colsurfb.2008.12.025
  3. Cunningham, D.P., Lundie, L.L. and Leon, L. (1993), "Precipitation of cadmium by Clostridium thermoaceticum", Appl. Environ. Microbiol., 59, 7-14.
  4. He, S., Guo, Z., Zhang, Y., Zhang, S., Wang, J. and Gu. N. (2007), "Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate", Materials Letters, 61, 3984-3987 https://doi.org/10.1016/j.matlet.2007.01.018
  5. Holmes, J.D., Richardson, D.J., Saed, S., Evans-Gowing, R., Russell, D.A. and Sodeau, J.R. (1997), "Cadmium-specific formation of metal sulfide 'Q-particle' by Klebsiella pneumoniae", Microbiology, 143, 2521-2530. https://doi.org/10.1099/00221287-143-8-2521
  6. Hosseinian, A., Mahjou, A.R. and Movahedi, M. (2010), "Using a bithiazole complex as precursor to synthesis of CdO-CdS nanocomposite via direct thermal decomposition", Int. J. Nano. Dim., 1(1), 65-76.
  7. Kolvin, V.L., Schlamp, M.C. and Alivisatos, A.P. (1994), "Light-emitting dlodes made from cadmium selenlde nanocrtstals and a semiconducting polymer", Letters to Nature, 370, 354-357. https://doi.org/10.1038/370354a0
  8. Mousavi, R.A., Akhavan Sepahy, A. and Fazeli, M.R. (2012), "Biosynthesis, purification and characterization of cadmium sulfide nanoparticles using enterobacteriaceae and their application", Proceedings Of The International Conference Nanomaterials, Applications And Properties, 1(1), 2304-1862.
  9. Nie, Q.L., Xu, Z.D., Yuan, Q.L. and Li, G.H. (2003), "Chemical control synthesis of CdS nanorods with different diameter", Mater. Chem. Phys., 82, 808-811. https://doi.org/10.1016/j.matchemphys.2003.07.007
  10. Pandian, S.R.K., Deepak, V., Kalishwaralal, K. and Gurunathan, S. (2011), "Biologically synthesized fluorescent CdS NPs encapsulated by PHB", Enzyme and Microbial Technology, 48, 319-325. https://doi.org/10.1016/j.enzmictec.2011.01.005
  11. Prasad, K. and Jha, A.K. (2010), "Biosynthesis of CdS nanoparticles: an improved green and rapid procedure", Journal of Colloid and Interface Science, 342, 68-72. https://doi.org/10.1016/j.jcis.2009.10.003
  12. Rozamond, Y., Sweeney, C., Mao, X., Gao, J.L.B., Angela, M.B., Georgiou, G. and Brent, L.I. (2004), "Bacterial biosynthesis of cadmium sulfide, nanocrystals", Chemistry and Biology, 11, 1553-1559. https://doi.org/10.1016/j.chembiol.2004.08.022
  13. Sanghi, R. and Verma, P. (2009), "A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus", Chemical Engineering Journal, 155, 886-891. https://doi.org/10.1016/j.cej.2009.08.006
  14. Sherman, R.L., Chen, Y.Y. and Ford, W.T. (2004), "Cadmium sulfide and cadmium Selenide/cadmium sulfide nanoparticles stabilized in water with poly (cysteine acrylamide)", J. Nanosci. Nanotech, 4, 1032-1038. https://doi.org/10.1166/jnn.2004.138
  15. Shukla, M., Kumari, S., Shukla, S. and Shukla, R.K. (2012), "Potent antibacterial activity of nano CdO synthesized via microemulsion scheme", J. Mater. Environ. Sci., 3(4), 678-685.
  16. Stephen, J.R., S.J. (1999). Maenaughton, Curr. Opin. Biotechnol. (10), 230.
  17. Whitling, J.M., Spreitzer, G. and Wright, D.W. (2000), "A combi-coated cadmium-sulfide crystallites in Candida glabrata", J. Biol. Mater., 12, 1377-1380.
  18. Xu, W., Wang, Y., Xu, R., Liang, S., Zhang, G. and Yin, D. (2007), "Synthesis and fluorescence spectrum analysis of CdS nanocrystals", J. Mater. Sci., 42, 6942-6945. https://doi.org/10.1007/s10853-006-1332-9
  19. Yang, H.S., Santra, S. and Holloway, P.H. (2005), "Synthesis and application of Mn doped II-VI semiconductor nanocrystals", J. Nanosci. Nanotech, 5, 364-1375.
  20. Zhua, H., Jianga, R., Xiao, L., Chang, Y., Guana, Y., Li, X. and Zengc, G. (2009), "Photocatalytic decolorization and degradation of Congo Red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation", Journal of Hazardous Materials, 169, 933-940. https://doi.org/10.1016/j.jhazmat.2009.04.037

Cited by

  1. Biosynthesis and Antimicrobial Activity of Semiconductor Nanoparticles against Oral Pathogens vol.2014, 2014, https://doi.org/10.1155/2014/347167
  2. Biological green synthesis of gold and silver nanoparticles vol.2, pp.3, 2014, https://doi.org/10.12989/anr.2014.2.3.135
  3. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles vol.7, 2016, https://doi.org/10.3389/fmicb.2016.01831
  4. Biogenic synthesis and photocatalytic activity of CdS nanoparticles vol.4, pp.19, 2014, https://doi.org/10.1039/c3ra46221h
  5. Microbe-mediated synthesis of antimicrobial semiconductor nanoparticles by marine bacteria vol.4, pp.2, 2014, https://doi.org/10.1007/s40097-014-0096-z
  6. Microbial synthesis of chalcogenide semiconductor nanoparticles: a review vol.9, pp.1, 2016, https://doi.org/10.1111/1751-7915.12297
  7. Detection of environmentally hazardous pesticide in fruit and vegetable samples using gold nanoparticles vol.80, 2017, https://doi.org/10.1016/j.foodcont.2017.04.023
  8. Trichosporon jirovecii-mediated synthesis of cadmium sulfide nanoparticles vol.56, pp.5, 2016, https://doi.org/10.1002/jobm.201500275
  9. In Vitro Antibacterial Activity and Mechanism of Silver Nanoparticles against Foodborne Pathogens vol.2014, 2014, https://doi.org/10.1155/2014/581890
  10. In vitro bactericidal activity of biosynthesized CuS nanoparticles against UTI-causing pathogens vol.47, pp.9, 2017, https://doi.org/10.1080/24701556.2016.1241272
  11. Synthesis of Metallic Silver Nanoparticles by Fluconazole Drug and Gamma Rays to Inhibit the Growth of Multidrug-Resistant Microbes vol.29, pp.6, 2018, https://doi.org/10.1007/s10876-018-1411-5
  12. Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticles vol.8, pp.44, 2018, https://doi.org/10.1039/C8RA03961E
  13. Insights into Comparative Antimicrobial Efficacies of Synthetic and Organic Agents: The Case of ZnS Nanoparticles and Zingiber officinale Rosc. vol.70, pp.6, 2018, https://doi.org/10.1007/s11837-018-2816-1
  14. Anticancer and Antibacterial Activity of Cadmium Sulfide Nanoparticles byAspergillus niger vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/4909054
  15. Antimicrobial Activity of Biosynthesized Metal Nanoparticles vol.10, pp.1, 2013, https://doi.org/10.2174/2468187309666190920095734
  16. Escherichia coli-based synthesis of cadmium sulfide nanoparticles, characterization, antimicrobial and cytotoxicity studies vol.51, pp.3, 2020, https://doi.org/10.1007/s42770-020-00238-9
  17. Bioinspired synthesis of multifunctional silver nanoparticles for enhanced antimicrobial and catalytic applications with tailored SPR properties vol.17, pp.None, 2013, https://doi.org/10.1016/j.mtchem.2020.100285
  18. Current Research on Silver Nanoparticles: Synthesis, Characterization, and Applications vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/6687290
  19. Experimental design approach for ultra-fast nickel removal by novel bio-nanocomposite material vol.10, pp.1, 2021, https://doi.org/10.12989/anr.2021.10.1.077
  20. Silver-calcia stabilized zirconia nanocomposite coated medical grade stainless steel as potential bioimplants vol.24, pp.None, 2013, https://doi.org/10.1016/j.surfin.2021.101086
  21. The ability of silver-biochar green-synthesized from Citrus maxima peel to adsorb pollutant organic compounds and antibacterial activity vol.15, pp.1, 2013, https://doi.org/10.1080/17518253.2021.2015456