References
- Al-Gahtani, H.J. and Naffa, M. (2009), "RBF meshless method for large deflection of thin plates with immovable edges", Eng. Anal. Boun. Elem., 33(2), 176-183. https://doi.org/10.1016/j.enganabound.2008.05.004
- Arefi, M. and Rahimi, G.H. (2012), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart Structures and Systems, Int. J., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127
- Cao, J. (1996), "Computer extended perturbation solution of the large deflection of a circular plate. Part I Uniform loading with clamped edge", Quar. J. Mech. Appl. Math., 49(2), 163-178. https://doi.org/10.1093/qjmam/49.2.163
- Cao, J. (1997), "Computer extended perturbation solution of the large deflection of a circular plate. Part II Control loading with clamped edge", Quar. J. Mech. Appl. Math., 50(3), 333-347. https://doi.org/10.1093/qjmam/50.3.333
- Chen, Y.Z. and Lee, K.Y. (2003), "Pseudo-linearization procedure of nonlinear ordinary differential equations for large deflection problem of circular plates", Thin-walled Struct., 41(4), 375-388. https://doi.org/10.1016/S0263-8231(02)00092-7
- Chia, C.Y. (1980), Nonlinear Analysis of Plates, McGraw-Hill, New York.
- He, J. H. (2003), "A Lagrangian for von Kármán equations of large deflection problem of thin circular plate", App. Math. Comp., 143(2-3), 543-549. https://doi.org/10.1016/S0096-3003(02)00383-1
- Hildebland, F.B. (1974), Introduction to Numerical Analysis, McGraw-Hill, New York.
- Kármán, T.H. (1940), "The engineering grapples with non-linear problems", Bill. Amer. Math. Soc., 46, 615-683. https://doi.org/10.1090/S0002-9904-1940-07266-0
- Lia, Q.S., Liu, J. and Xiao, H.B. (2004), "A new approach for bending analysis of thin circular plates with large deflection", Int. J. Mech. Sci., 46(2), 173-180. https://doi.org/10.1016/j.ijmecsci.2004.03.012
- Naffa, M. and Al-Gahtani, H.J. (2007), "RBF-based meshless method for large deflection of thin plates", Eng. Anal. Boun. Elem., 31(4), 311-317. https://doi.org/10.1016/j.enganabound.2006.10.002
- Shufrin, I., Rabinovitch, O. and Eisenberger, M. (2010), "A semi-analytical approach for the geometrically nonlinear analysis of trapezoidal plates", Inter. J. of Mech. Sci., 52(12), 1588-1596. https://doi.org/10.1016/j.ijmecsci.2010.07.008
- Timoshenko, S.P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill, London.
- Turvey, G.J. and Salehi, M. (1998), "Large deflection analysis of eccentrically stiffened sector plates", Comput. Struct., 68(1-3), 191-205. https://doi.org/10.1016/S0045-7949(98)00024-8
- Van Gorder, R.A. (2012), "Analytical method for the construction of solutions to the Foppl von Karman equations governing deflections of a thin flat plate", Inter. J. of Non-Linear Mech., 47(3), 1-6.
- Volmir, A.C. (1963), Large Deflection problem for Plates and Shells, Science Press, Beijing. (Chinese translation from Russian)
- Way, S. (1934), "Bending of circular plate with large deflection", Trans. ASME, 56, 627-636.
Cited by
- Large deflection analysis of point supported super-elliptical plates vol.51, pp.2, 2014, https://doi.org/10.12989/sem.2014.51.2.333
- Generalized Reissner analysis of large axisymmetric deflections of thin circular and annular plates vol.203, pp.None, 2020, https://doi.org/10.1016/j.ijsolstr.2020.08.004