DOI QR코드

DOI QR Code

Fundamental Properties and Hydration Characteristics of Mortar Based on MgO Added Industrial By-products

산업부산물을 첨가한 MgO 기반 모르타르의 기초물성 및 수화특성에 관한 연구

  • Hong, Sung-Gul (School of Architecture, Seoul National University) ;
  • Kim, Do-Young (School of Architecture, Seoul National University) ;
  • Lee, Dong-Sik (Architectural Heritage Research Division, National Research Institute)
  • 홍성걸 (서울대학교 건축학과) ;
  • 김도영 (서울대학교 건축학과) ;
  • 이동식 (국립문화재연구소 건축문화재연구실)
  • Received : 2013.05.23
  • Accepted : 2013.07.30
  • Published : 2013.10.31

Abstract

Hydration and physical characteristics of chemically-bonded phosphate ceramic (CBPC) binder based on dead-burned Mg-O with six different blends are investigated for efficient repair construction material by retarding set phase with $H_3BO_3$. The test specimen of the blender with silica fume shows higher compressive strength after 75 days. The CBPC with silica fume results in higher modulus of rupture that others. The test specimens of CBPC eludes lower calcium ion than that of OPC (Ordinay Portland Cement). The X-ray diffraction pattern shows that hydration results in the formation of magnesium hydroxide, M-S-H gel and $MgCO_3$ for the specimen with silica fumes. Combination with calcium for MgO is not desirable due to no formation of chemical bond between two components. Based on the experimental program, the mixture of MgO and silica fume shows efficient performance in strength and durability.

CBPC(chemically-bonded phosphate ceramic) 바인더는 사소 MgO와 인산의 강력한 산-염기 반응을 이용한 초속경 보수재료로서, 시멘트와는 달리 CaO의 함량을 10% 이하로 줄인 재료이다. 이번 실험에서는 CBPC 바인더에 천연광물 및 산업부산물로 이뤄진 6가지 충전재들을 첨가하고 물리적 성능 및 수화 반응을 관찰하였다. 실리카퓸을 첨가한시편이 압축강도 및 동탄성계수가 상대적으로 높았고, 특히 장기강도 면에서 뚜렷한 증가율을 보였다. 또한 XRD 분석을 통해 실리카퓸을 첨가한 시편에서 마그네슘의 수화물인 M-S-H gel and $MgCO_3$ 피크를 관찰 할 수 있었다. 칼슘 성분이 다량 포함된 충전재를 넣은 시편의 경우 강도 및 내구성 면에서 좋지 않은 결과를 낳은 것으로 보아, 칼슘과 마그네슘 수화물은 서로 화학적으로 결합하지 않으므로 섞지 않는 것이 좋다는 결론을 도출했다. 결과적으로 MgO를 기반으로 하는 모르타르에는 순수하게 실리카 성분으로만 이루어진 실리카 흄과 같은 충전재가 알맞은 것으로 나타났다.

Keywords

References

  1. Jang, B. S., Kwon, Y. G., Choi, S. W., and Lee, K. M., "Fundamental Properties of Cement Composites Containing Lightly Burnt MgO Powders," Journal of the Korea Concrete Institute, Vol. 23, No. 2, 2011, pp. 225-233. (doi: http://dx.doi.org/10.4334/JKCI.2011.23.2.225)
  2. Ribeiro, Daniel Veras and Morelli, Marcio Raymundo, "Performance Analysis of Magnesium Phosphate Cement Mortar Containing Grinding Dust," Materials Research, Vol. 12, No. 1, 2009, pp. 51-56. (doi: http://dx.doi.org/10.1590/ S1516-14392009000100005)
  3. Kang, S. P., Kim, J. H., Lee, J., No, H. N., and Lee, Y. W., "Effect by Unit Water Content and Mixing Proportion of Phosphate with Magnesium Used in Magnesia Phosphate Composite," Proceedings of the Korea Concrete Institute Conference-Spring, Vol. 24, No. 1, 2012, pp. 717-718.
  4. Kang, I. S., Han, D. H., Park, M. Y., Ahn, M. Y., Park, M. S., and Jung, S. J., "Studies on Basic Properties and Durability of High Early Strength Repair Mortar Using Magnesia Polyphosphate Cement," The Collected Papers of the Architectural Institute of Korea Symposium, Vol. 27, No. 1, 2007, pp. 463-464.
  5. Vandeperre, L. J., "Microstructures of Reactive Magnesia Cement Blends," Cement and Concrete Composites, Vol. 30, Issue 8, 2008, pp. 706-714. (doi: http://dx.doi.org/10.1016/j.cemconcomp.2008.05.002)
  6. Wei J., Yu Q., Zhang W., and Zhang H., "Studies on the Reaction Products of MgO and Microsilica Cementitious Materials at Different Temperature," Journal of Wuhan University of Technology-Mater. Sci. Ed., Vol. 26, Issue 4, 2011, pp. 745-748. (doi: http://dx.doi.org/10.1007/s11595- 011-0304-3)
  7. Wei J., Chen Y., and Li Y., "The Reaction Mechanism between MgO and Microsilica at Room Temprature," Journal of Wuhan University of Technology, Vol. 21, No. 2, 2006, pp. 88-91. (doi: http://dx.doi.org/10.1007/BF02840848)
  8. Patrick, K. Donahue et al., "Durable Phosphate-Bond Natural Fiber Composite Products," IIBCC 2006-Sao Paulo, Brazil, 2006, pp. 79-88.
  9. Tingting Zhang, C. R. Cheeseman, and L. J. Vandeperre, "Development of Low pH Cement Systems Forming Magnesium Silicate Hydrate (M-S-H)," Cement and Concrete Research, Vol. 41, Issue 4, 2011, pp. 439-442. (doi: http://dx.doi.org/10.1016/j.cemconres.2011.01.016)

Cited by

  1. Experimental Study on Performance of MgO-based Patching Materials for Rapid Repair of Concrete Pavement vol.18, pp.1, 2016, https://doi.org/10.7855/IJHE.2016.18.1.043