DOI QR코드

DOI QR Code

Methicillin 저항성 Staphylococcus aureus에 대한 선복화(Inula britannica flowers) 추출물의 항균효과

Antimicrobial Effect of Inula britannica Flower Extract against Methicillin-resistant Staphylococcus aureus

  • 이나경 (건국대학교 동물생명과학대학) ;
  • 이장현 (건국대학교 동물생명과학대학) ;
  • 이용주 (건국대학교 동물생명과학대학) ;
  • 안신혜 (건국대학교 동물생명과학대학) ;
  • 엄수진 (건국대학교 동물생명과학대학) ;
  • 백현동 (건국대학교 동물생명과학대학)
  • Lee, Na-Kyoung (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Lee, Jang-Hyun (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Lee, Yong Ju (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Ahn, Sin Hye (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Eom, Su Jin (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Paik, Hyun-Dong (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
  • 투고 : 2013.05.30
  • 심사 : 2013.08.02
  • 발행 : 2013.09.28

초록

선복화(Inula britannica flowers) 메탄올 추출물을 이용하여 methicillin에 저항성이 있는 Staphylococcus aureus (MRSA)에 대한 항균효과를 검증하였다. 선복화 메탄올 추출물은 다량의 quercetin을 함유한 것으로 분석되었다. 세 종류의 MRSA에 대한 항균효과는 disc diffusion method에 의해 확인되었고, 최소저해농도(MIC) 및 최소사멸농도(MBC)는 각각 0.625 mg/ml-1.25 mg/ml, 2.5 mg/ml로 확인되었다. 이들 MRSA 중 S. aureus ATCC 33591가 가장 민감한 작용을 하였으며, 이 균에 대해서 작용기작을 확인하였다. 시간에 따른 저해 정도와 형태관찰을 통해 선복화 메탄올 추출물이 항균활성을 갖는 것을 확인할 수 있었다. 메탄올 추출물의 resistant gene에 대한 영향은 mRNA 상에서 mecA와 mecRI gene의 발현감소와 mecI gene의 발현증가를 통해 메티실린 내성을 감소시키는 것을 알 수 있었다. 따라서 선복화 메탄올추출물은 MRSA에 대한 항균효과를 가지는 천연 항균성 소재로서의 가능성을 확인할 수 있었다.

The antimicrobial effect of the methanol extract of Inula britannica flowers against methicillin resistant Staphylococcus aureus (MRSA) was investigated. It was confirmed that the methanol extract is mainly composed of quercetin, which has antimicrobial properties. The antimicrobial effect of the methanol extract against 3 MRSA strains was determined by the disc diffusion method. The minimal inhibitory concentrations were ranged from 0.625 mg/ml to 1.25 mg/ml, and the minimum bactericidal concentrations were 2.5 mg/ml. Time kill kinetics revealed bactericidal activities, and the morphological alterations in S. aureus ATCC 33591 treated with the extract were observed using a scanning electron microscope. The methanol extract affected the expression of the resistant genes, mecA, mecI, and mecRI in mRNA. Therefore, the methanol extract of I. britannica flowers clearly demonstrated an antimicrobial effect against MRSA and these results suggest a potential for application as a natural antimicrobial agent.

키워드

참고문헌

  1. Hirai I, Okuno M, Katsuma R, Arita N, Techibana M, Yamamoto Y. 2010. Characterization of anti-Staphylococcus aureus activity of quercetin. Int. J. Food Sci. Tech. 45: 1250-1254. https://doi.org/10.1111/j.1365-2621.2010.02267.x
  2. Högberg LD, Heddini A, Cars O. 2010. The global need for effective antibiotics: challenges and recent advances. Trends Pharmacol. Sci. 31: 509-515. https://doi.org/10.1016/j.tips.2010.08.002
  3. Hwang BM, Lee JY, Lee DG. 2010. Antimicrobial peptides derived from the marine organism(s) and its mode of action. Korean J. Microbiol. Biotechnol. 1: 19-23.
  4. Khan AL, Hussain J, Hamayun M, Gilani SA, Ahmad S, Rehman G, et al. 2010. Secondary metabolites from Inula britannica L. and their biological activities. Mol. 15: 1562-1577. https://doi.org/10.3390/molecules15031562
  5. Kubo I, Fujita KI, Lee SH, Ha TJ. 2005. Antibacterial activity of polygodial. Phytother. Res. 19: 1013-1017. https://doi.org/10.1002/ptr.1777
  6. Kuwahara-Arai K, Kondo N, Hori S, Tateda-Suzuki E, Hiramatsu K. 1996. Suppression of methicillin resistance in a mecA-containing pre-methicillin-resistant Staphylococcus aureus strain is caused by the mecI-mediated repression of PBP 2' production. Antimicrob. Agents Chemother. 40: 2680-2685.
  7. Lee JH, Van ND, Ma JY, Kim YB, Kim SK, Paik HD. 2010. Screening of antiviral medicinal plant against avian influenza virus H1N1 for food safety. Korean J. Food Sci. Anim. Resour. 30: 345-350. https://doi.org/10.5851/kosfa.2010.30.2.345
  8. Lee JH, Lee YJ, Ahn SH, Lee NK, Paik HD. 2012. Antimicrobial properties of whole milk with Inula britannica extract against Bacillus cereus strains during storage. Michwissenschaft 67: 315-317.
  9. Lee JW, Ji YJ, Lee SO, Lee IS. 2007. Effect of Saliva miltiorrhiza Bunge on antimicrobial activity and resistant gene regulation against methicillin-resistant Staphylococcus aureus (MRSA). J. Microbiol. 45: 350-357.
  10. Lee JW, Ji YJ, Yu MH, Bo MH, Seo HJ, Lee SP, et al. 2009. Antimicrobial effect and resistant regulation of Glycyrrhiza uralensis on methicillin-resistant Staphylococcus aureus. Nat. Prod. Res. 23: 101-111. https://doi.org/10.1080/14786410801886757
  11. Li X, Xiong Y, Fan X, Feng P, Tang H, Zhou T. 2012. The role of femA regulating gene on methicillin-resistant Staphylococcus aureus clinical isolates. Med. Mal. Infect. 42: 218-225.
  12. Lim TT, Coombs GW, Grubb WB. 2002. Genetic organization of mecA and mecA-regulatory genes in epidemic methicillinresistant Staphylococcus aureus from Australia and England. J. Antimicrob. Chemoth. 50: 819-824. https://doi.org/10.1093/jac/dkf238
  13. Maoz M, Neeman I. 1998. Antimicrobial effects of aqueous plant extracts on the fungi Mircosporum canis and Trichophyton rubrum and on three bacterial species. Lett. Appl. Microbiol. 26: 61-63. https://doi.org/10.1046/j.1472-765X.1998.00277.x
  14. Nyman JA, Lees CH, Bockstedt LA, Filice GA, Lexau C, Lesher LJ, et al. 2011. Cost of screening intensive care unit patients for methicillin-resistant Staphylococcus aureus in hospitals. Am. J. Intect. Control. 39: 27-34. https://doi.org/10.1016/j.ajic.2010.09.006
  15. O'Shea S, Lucey B, Cotter L. 2009. In vitro activity of Inula helenum against clinical Staphylococcus aureus strains including MRSA. Br. J. Biomed. Sci. 66: 186-189.
  16. Shan B, Cai Y, Brooks JD, Corke H. 2007. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food Microbiol. 117: 112-119. https://doi.org/10.1016/j.ijfoodmicro.2007.03.003
  17. Song QH, Kobayashi T, Iijima K, Hong T, Cyong JC. 2000. Hepatoprotective effects of Inula britannica on hepatic injury in mice. Phytother. Res. 14: 180-186. https://doi.org/10.1002/(SICI)1099-1573(200005)14:3<180::AID-PTR589>3.0.CO;2-H
  18. Soon JM, Singh H, Baines R. 2011. Foodborne disease in Malaysia: A review. Food Control 22: 823-830. https://doi.org/10.1016/j.foodcont.2010.12.011
  19. Talib WH, Mahasneh AM. 2010. Antimicrobial, cytotoxicity and phytochemical screening of Jordanian plants used in traditional medicine. Mol. 15: 1811-1824. https://doi.org/10.3390/molecules15031811
  20. Tanaka H, Sudo M, Hirata M, Etoh H, Sato M, Yamaguchi R, et al. 2010. A new biisoflavonoid from the roots of Erythrina variegata. Nat. Prod. Commun. 5: 1781-1784.
  21. Todd ECD. 2003. Microbiological safety standards and public health goals to reduce food-borne disease. Meat Sci. 66: 33-43.
  22. Woisky R, Salatino A. 1998. Analysis of propolis: some parameters and procedures for chemical quality control. J. Apic. Res. 37: 99-105.
  23. Xu HX, Lee SF. 2004. The antibacterial principle of Caesalpina sappan. Phytother. Res. 18: 647-651. https://doi.org/10.1002/ptr.1524
  24. Yang JH, Lin HC, Mau JL. 2002. Antioxidant properties of several commercial mushrooms. Food Chem. 77: 229-235. https://doi.org/10.1016/S0308-8146(01)00342-9

피인용 문헌

  1. Inhibition of Human Neutrophil Elastase by Sesquiterpene Lactone Dimers from the Flowers of Inula britannica vol.28, pp.11, 2013, https://doi.org/10.4014/jmb.1807.07039