DOI QR코드

DOI QR Code

Evaluation of Macroporous and Microporous Carriers for CHO-K1 Cell Growth and Monoclonal Antibody Production

  • Rodrigues, Maria Elisa (IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho) ;
  • Costa, Ana Rita (IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho) ;
  • Fernandes, Pedro (IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho) ;
  • Henriques, Mariana (IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho) ;
  • Cunnah, Philip (Biotecnol) ;
  • Melton, David W. (Edinburgh Cancer Research Centre, University of Edinburgh) ;
  • Azeredo, Joana (IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho) ;
  • Oliveira, Rosario (IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho)
  • Received : 2013.04.04
  • Accepted : 2013.05.09
  • Published : 2013.09.28

Abstract

The emergence of microcarrier technology has brought a renewed interest in anchorage-dependent cell culture for high-yield processes. Well-known in vaccine production, microcarrier culture also has potential for application in other fields. In this work, two types of microcarriers were evaluated for small-scale monoclonal antibody (mAb) production by CHO-K1 cells. Cultures (5 ml) of microporous Cytodex 3 and macroporous CultiSpher-S carriers were performed in vented conical tubes and subsequently scaled-up (20 ml) to shake-flasks, testing combinations of different culture conditions (cell concentration, microcarrier concentration, rocking methodology, rocking speed, and initial culture volume). Culture performance was evaluated by considering the mAb production and cell growth at the phases of initial adhesion and proliferation. The best culture performances were obtained with Cytodex 3, regarding cell proliferation (average $1.85{\pm}0.11{\times}10^6$ cells/ml against $0.60{\pm}0.08{\times}10^6$ cells/ml for CultiSpher-S), mAb production ($2.04{\pm}0.41{\mu}g/ml$ against $0.99{\pm}0.35{\mu}g/ml$ for CultiSpher-S), and culture longevity (30 days against 10-15 days for CultiSpher-S), probably due to the collagen-coated dextran matrix that potentiates adhesion and prevents detachment. The culture conditions of greater influence were rocking mechanism (Cytodex 3, pulse followed by continuous) and initial cell concentration (CultiSpher-S, $4{\times}10^5$ cells/ml). Microcarriers proved to be a viable and favorable alternative to standard adherent and suspended cultures for mAb production by CHO-K1 cells, with simple operation, easy scale-up, and significantly higher levels of mAb production. However, variations of microcarrier culture performance in different vessels reiterate the need for optimization at each step of the scale-up process.

Keywords

References

  1. Almgren J, Nilsson C, Peterson AC, Nilsson K. 1991. Cultispher-macroporous gelatine microcarrier - new applications, pp. 434-438. In Spier RE, Griffiths JB, Meignier B (eds.). Production of Biologicals from Animal Cells in Culture. Butterworth-Heinemann, Oxford.
  2. Andersen DC, Krummen L. 2002. Recombinant protein expression for therapeutic applications. Curr. Opin. Biotechnol. 13: 117-123. https://doi.org/10.1016/S0958-1669(02)00300-2
  3. Andersen DC, Reilly DE. 2004. Production technologies for monoclonal antibodies and their fragments. Curr. Opin. Biotechnol. 15: 456-462. https://doi.org/10.1016/j.copbio.2004.08.002
  4. Auni s JG, Bader B, Caola A, Griffiths J, Katz M, Licari P, et al. 2003. Fluid mechanics, cell distribution, and environment in cell cube bioreactors. Biotechnol. Prog. 19: 2-8. https://doi.org/10.1021/bp0256521
  5. Berry JM, Barnabe N, Coombs KM, Butler M. 1999. Production of reovirus type-1 and type-3 from Vero cells grown on solid and macroporous microcarriers. Biotechnol. Bioeng. 62: 12-19. https://doi.org/10.1002/(SICI)1097-0290(19990105)62:1<12::AID-BIT2>3.0.CO;2-G
  6. Bluml G. 2007. Microcarrier cell culture technology, pp. 149-178. In Portner R (ed.). Animal Cell Biotechnology: Methods and Protocols, 2nd Ed. Humana Press Inc., Totowa, NJ.
  7. Butler M. 1987. Growth limitations in microcarrier cultures. Adv. Biochem. Eng. 34: 57-84.
  8. Butler M. 1996. Modes of culture for high cell densities, pp. 175-194. In Butler M (ed.). Animal Cell Culture and Technology. Taylor and Francis, Routledge, UK.
  9. Cadic C, Dupuy B, Pianet I, Merle M, Margerin C, Bezian JH. 1992. In vitro culture of hybridoma cells in agarose beads producing antibody secretion for two weeks. Biotechnol. Bioeng. 39: 108-112. https://doi.org/10.1002/bit.260390115
  10. Carcagno CM, Criscuolo M, Melo C, Vidal JA. 2000. Method for the massive culture of cells producing recombinant human erythropoietin. US Patent WO/2000/027997.
  11. Chiou TW, Murakami S, Wang DIC, Wu WT. 1991. A fiberbed bioreactor for anchorage-dependent animal cell cultures. I. Bioreactor design and operations. Biotechnol. Bioeng. 37: 755-761. https://doi.org/10.1002/bit.260370810
  12. Chu L, Robinson DK. 2001. Industrial choices for protein production by large-scale cell culture. Curr. Opin. Biotechnol. 12: 180-187. https://doi.org/10.1016/S0958-1669(00)00197-X
  13. Costa AR, Rodrigues ME, Henriques M, Melton D, Cunnah P, Oliveira R, et al. 2012. Evaluation of the $OSCA^{TM}$ system for the production of monoclonal antibodies by CHO-K1 cells. Int. J. Pharm. 430: 42-46. https://doi.org/10.1016/j.ijpharm.2012.03.028
  14. Del Guerra S, Bracci C, Nilsson K, Belcourt A, Kessler L, Lupi R, et al. 2001. Entrapment of dispersed pancreatic islet cells in CultiSpher-S macroporous gelatin microcarriers: preparation, in vitro characterization, and microencapsulation. Biotechnol. Bioeng. 75: 741-744. https://doi.org/10.1002/bit.10053
  15. Genzel Y, Reichl U. 2007. Vaccine production: state of the art and future needs in upstream processing, pp. 457-473. In Portner R (ed.). Animal Cell Biotechnology: Methods and Protocols. Humana Press, NJ.
  16. Griffiths B. 1990. Perfusion systems for cell cultivation, pp. 217-250. In Lubiniecki AS (ed.). Large-scale Mammalian Cell Culture Technology. CRC Press.
  17. Griffiths B. 2007. The development of animal cell products: history and overview, pp. 1-14. In Stacey G, Davis J (eds.). Medicines from Animal Cell Culture. John Wiley & Sons, Chichester.
  18. Hirtenstein M, Clark J, Lindgren G, Vretblad P. 1980. Microcarriers for animal cell culture: a brief review of theory and practice. Dev. Biol. Stand. 46: 109-116.
  19. Ho L, Greene CL, Schmidt AW, Huang LH. 2004. Cultivation of HEK 293 cell line and production of a member of the superfamily of g-protein coupled receptors for drug discovery applications using a highly efficient novel bioreactor. Cytotechnology 45: 117-123. https://doi.org/10.1007/s10616-004-6402-8
  20. Hu X, Xiao C, Huang Z, Guo Z, Zhang Z, Li Z. 2000. Pilot production of u-PA with porous microcarrier cell culture. Cytotechnology 33: 13-19. https://doi.org/10.1023/A:1008127310890
  21. Klement G, Scheirer W, Katinger HW. 1987. Construction of a large scale membrane reactor system with different compartments for cells, medium and product. Dev. Biol. Stand. 66: 221-226.
  22. Kong D, Chen M, Gentz R, Zhang J. 1999. Cell growth and protein formation on various microcarriers. Cytotechnology 29: 151-158. https://doi.org/10.1023/A:1008053421462
  23. Lee GM, Varma A, Palsson BO. 1991. Production of monoclonal antibody using free-suspended and immobilized hybridoma cells: effect of serum. Biotechnol. Bioeng. 38: 821-830. https://doi.org/10.1002/bit.260380804
  24. Li X, Liu T, Song K, Yao L, Ge D, Bao C, et al. 2006. Culture of neural stem cells in calcium alginate beads. Biotechnol. Prog. 22: 1683-1689. https://doi.org/10.1002/bp060185z
  25. Mendonca R, Ioshimoto L, Mendonca R, De-Franco M, Valentini E, Becak W, et al. 1993. Preparation of human rabies vaccine in VERO cell culture using a microcarrier system. Braz. J. Med. Biol. Res. 26: 1305-1317.
  26. Nilsson K, Buzsaky F, Mosbach K. 1986. Growth of anchoragedependent cells on macroporous microcarriers. Nat. Biotechnol. 4: 989-990. https://doi.org/10.1038/nbt1186-989
  27. Ozturk SS, Hu WS. 2006. Cell Culture Technology for Pharmaceutical and Cell-based Therapies. CRC Press, NY.
  28. Reuveny S, Thoma RW. 1986. Apparatus and methodology for microcarrier cell culture, pp. 139-179. In Allen IL (ed.). Advances in Applied Nicrobiology. Academic Press.
  29. Rudolph G, Lindner P, Gierse A, Bluma A, Martinez G, Hitzmann B, et al. 2008. Online monitoring of microcarrier based fibroblast cultivations with in situ microscopy. Biotechnol. Bioeng. 99: 136-145. https://doi.org/10.1002/bit.21523
  30. Rupp RG. 1985. Use of cellular micro-encapsulation in large-scale production of monoclonal antibodies., pp. 19-8. In Feder J, Tolbert WR (eds.). Large-scale Mammalian Cell Culture. Academic Press, Orlando.
  31. Scheirer W. 1988. High-density growth of animal cells within cell retention fermenters equipped with membranes, pp. 263-81. In Spier RE, Griffiths JB (eds.). Animal Cell Biotechnology. Academic Press, London.
  32. Schurch U, Cryz SJ, Lang AB. 1992. Scale-up and optimization of culture conditions of a human heterohybridoma producing serotype-specific antibodies to Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 37: 446-450.
  33. Unger DR, Muzzio FJ, Aunins JG, Singhvi R. 2000. Computational and experimental investigation of flow and fluid mixing in the roller bottle bioreactor. Biotechnol. Bioeng. 70: 117-130. https://doi.org/10.1002/1097-0290(20001020)70:2<117::AID-BIT1>3.0.CO;2-8
  34. Valdes R, Ibarra N, Gonzalez M, Alvarez T, Garcia J, Llambias R, et al. 2001. CB.Hep-1 hybridoma growth and antibody production using protein-free medium in a hollow fiber bioreactor. Cytotechnology 35: 145-154. https://doi.org/10.1023/A:1017921702775
  35. Van Wezel AL. 1967. Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature 216: 64-65. https://doi.org/10.1038/216064a0
  36. Varani J, Piel F, Josephs S, Beals T, Hillegas W. 1998. Attachment and growth of anchorage-dependent cells on a novel, charged-surface microcarrier under serum-free conditions. Cytotechnology 28: 101-109. https://doi.org/10.1023/A:1008029715765
  37. Velez JO, Russell BJ, Hughes HR, Chang GJJ, Johnson BW. 2008. Microcarrier culture of COS-1 cells producing Japanese encephalitis and dengue virus serotype 4 recombinant viruslike particles. J. Virol. Methods 151: 230-236. https://doi.org/10.1016/j.jviromet.2008.05.010
  38. Voigt A, Zintl F. 1999. Hybridoma cell growth and antineuroblastoma monoclonal antibody production in spinner flasks using a protein-free medium with microcarriers. J. Biotechnol. 68: 213-226. https://doi.org/10.1016/S0168-1656(98)00208-9
  39. Wang G, Zhang W, Friedman D, Eppstein L, Kadouri A. 1992. Continuous production of monoclonal antibodies in Celligen packed bed reactor using Fiber-Cel carrier, pp. 460-464. In Spier RE, Griffiths JB, MacDonald C (eds.). Animal Cell Technology: Developments, Process and Products. Butterworth-Heinemann, Oxford.
  40. Wang MD, Yang M, Huzel N, Butler M. 2002. Erythropoietin production from CHO cells grown by continuous culture in a fluidized-bed bioreactor. Biotechnol. Bioeng. 77: 194-203. https://doi.org/10.1002/bit.10144
  41. Wang Y, Ouyang F. 1999. Bead-to-bead transfer of Vero cells in microcarrier culture. Bioproc. Biosyst. Eng. 21: 211-213. https://doi.org/10.1007/s004490050665
  42. Werner A, Duvar S, Muthing J, Buntemeyer H, Lunsdorf H, Strauss M, et al. 2000. Cultivation of immortalized human hepatocytes HepZ on macroporous CultiSpher G microcarriers. Biotechnol. Bioeng. 68: 59-70. https://doi.org/10.1002/(SICI)1097-0290(20000405)68:1<59::AID-BIT7>3.0.CO;2-N
  43. Wu SC, Huang GYL. 2002. Stationary and microcarrier cell culture processes for propagating Japanese encephalitis virus. Biotechnol. Prog. 18: 124-128. https://doi.org/10.1021/bp010120q
  44. Wurm FM. 2004. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 22: 1393-1398. https://doi.org/10.1038/nbt1026
  45. Yamaguchi M, Shirai Y, Inouye Y, Shoji M, Kamei M, Hashizume S, et al. 1997. Changes in monoclonal antibody productivity of recombinant BHK cells immobilized in collagen gel particles. Cytotechnology 23: 5-12. https://doi.org/10.1023/A:1007959400666
  46. Yang ST, Luo J, Chen C. 2004. A fibrous-bed bioreactor for continuous production of monoclonal antibody by hybridoma. Adv. Biochem. Eng. Biotechnol. 87: 61-96.
  47. Yoon SK, Hong JK, Choo SH, Song JY, Park HW, Lee GM. 2006. Adaptation of Chinese hamster ovary cells to low culture temperature: cell growth and recombinant protein production. J. Biotechnol. 122: 463-472. https://doi.org/10.1016/j.jbiotec.2005.09.010
  48. Zhang S, Thwin C, Wu Z, Cho T, Gallagher S. 2000. An improved method for the production and purification of adenoviral vectors. US Patent WO/2000/032754.
  49. Ziao C, Huang Z, Li W, Hu X, Qu W, Gao L, et al. 2002. High density and scale-up cultivation of recombinant Cho cell line and hybridomas with porous microcarrier cytopore, pp. 389-393. In Merten OW, Perrin P, Griffiths B (eds.). New Developments and New Applications in Animal Cell Technology. Lavoisier.

Cited by

  1. Macroporous microcarriers for introducing cells into a microfluidic chip. vol.14, pp.18, 2013, https://doi.org/10.1039/c4lc00693c
  2. Hydrogel Fiber Cultivation Method for Forming Bacterial Cellulose Microspheres vol.9, pp.1, 2013, https://doi.org/10.3390/mi9010036
  3. Cross-linked Porous Gelatin Microparticles with Tunable Shape, Size, and Porosity vol.37, pp.44, 2021, https://doi.org/10.1021/acs.langmuir.1c01508
  4. Chitosan based microcarriers for cellular growth and biologics production vol.2, pp.None, 2021, https://doi.org/10.1016/j.carpta.2021.100154