References
- An YJ. 2004. Soil ecotoxicity assessment using cadmium sensitive plants. Environ. Pollut. 127: 21-26. https://doi.org/10.1016/S0269-7491(03)00263-X
-
Aruoja V, Dubourguier H, Kasemets K, Kahru A. 2009. Toxicity of nanoparticles of CuO, ZnO and
$TiO_2$ to microalgae Pseudokirchneriella subcapitata. Sci. Total Environ. 407: 1461-1468. https://doi.org/10.1016/j.scitotenv.2008.10.053 - Das P, Samantaray S, Rout GR. 1997. Studies on cadmium toxicity in plants: a review. Environ. Pollut. 98: 29-36. https://doi.org/10.1016/S0269-7491(97)00110-3
- Harris AT, Bali R. 2008. On the formation and extent of uptake of silver nanoparticles by live plants. J. Nanopart. Res. 10: 691-695. https://doi.org/10.1007/s11051-007-9288-5
- International Council on Nanotechnology. 2008. Nano Good Practices Wiki. Available at http://icon.rice.edu/projects.cfm?doc_id=12207
- Jemec A, Drobne D, Remskar M, Sepcic K, Tisler T. 2008. Effects of ingested nano-sized titanium dioxide on terrestrial isopods (Porcellio scaber). Environ. Toxicol. Chem. 27: 1904-1914. https://doi.org/10.1897/08-036.1
- Johansen A, Pedersen AL, Jensen KA, Karlson U, Hansen BM, Scott-Fordsmand JJ, et al. 2008. Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ. Sci. Technol. 27: 1895-1903.
-
Kasemets K, Ivask A, Dubourguier H, Kahru A. 2009. Toxicity of nanoparticles of ZnO, CuO and
$TiO_2$ to yeast Saccharomyces cerevisiae. Toxicol. In Vitro 23: 1116-1122. https://doi.org/10.1016/j.tiv.2009.05.015 - Kim S, Lim H, Lee I. 2010. Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates. J. Biosci. Bioeng. 109: 47-50. https://doi.org/10.1016/j.jbiosc.2009.06.018
- Kim S, Lee S, Lee I. 2012. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut. 223: 2799-2806. https://doi.org/10.1007/s11270-011-1067-3
-
Kim S, Kim J, Lee I. 2011. Effects of Zn and ZnO nanoparticles and
$Zn^{2+}$ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. Chem. Ecol. 27: 49-55. https://doi.org/10.1080/02757540.2010.529074 - Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. 2008. Nanomaterials in the environment: behaviour, fate, bioavailability, and effects. Environ. Sci. Technol. 27: 1825-1851.
- Lee S, Kim SY, Kim S, Lee I. 2012. Effects of soil-plant interactive system on response to exposure to ZnO nanoparticles. J. Microbiol. Biotechnol. 22: 1264-1270. https://doi.org/10.4014/jmb.1203.03004
- Lee S, Kim S, Kum SY, Lee I. 2013. Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. Environ. Sci. Pollut. Res. 20: 848-854. https://doi.org/10.1007/s11356-012-1069-8
- Lin D, Xing B. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut. 150: 243-250. https://doi.org/10.1016/j.envpol.2007.01.016
- Lin D, Xing B. 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 42: 5580-5585. https://doi.org/10.1021/es800422x
- Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T, et al. 2008. Formation of metallic copper manoparticles at the soil-root interface. Environ. Sci. Technol. 42: 1766-1772. https://doi.org/10.1021/es072017o
- Mortimer M, Kasemets K, Kahru A. 2010. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 269: 182-189. https://doi.org/10.1016/j.tox.2009.07.007
- Nannipieri P, Kandeler E, Ruggiero P. 2002. Enzyme activities and microbiological and biochemical processes in soil, pp. 1-33. In Burns RG, Dick RP (eds.). Enzymes in the Environment. Activity, Ecology and Applications. Marcel Dekker, NY.
- Nel A, Xia T, Moedler L, Li N. 2006. Toxic potential of materials at nanolevel. Science 311: 622-627. https://doi.org/10.1126/science.1114397
- Nowack B, Bucheli TD. 2007. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150: 5-22. https://doi.org/10.1016/j.envpol.2007.06.006
-
Pipan-Tkalec Z, Drobne D, Jemec A, Romih T, Zidar P, Bele M. 2010. Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or
$ZnCl_2$ solution. Toxicology 269: 198-203. https://doi.org/10.1016/j.tox.2009.08.004 - Shah V, Belozerova I. 2009. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seed. Water Air Soil Pollut. 197: 143-148. https://doi.org/10.1007/s11270-008-9797-6
- Sukul P. 2006. Enzymatic activities and microbial biomass in soil as influenced by metalaxy residues. Soil Biol. Biochem. 38: 320-326. https://doi.org/10.1016/j.soilbio.2005.05.009
- Susarla S, Medina VF, McCutcheon SC. 2002. Phytoremediation: an ecological solution to organic chemical contamination. Ecol. Eng. 19: 647-668.
- Tabatabai MA. 1982. Soil enzymes, pp. 903-904. In Page AL (ed.). Methods of Soil Analysis, Part 2 Agronomy Monograph. American Society of Agronomy, Madison, WI.
- Tabatabai MA. 1994. Soil enzymes, pp. 775-833. In Weaver RW, Angle S, Bottomley P (eds.). Methods of Soil Analysis. Part 2: Microbiological and Biochemical Properties. Soil Science Society of America, Madison, WI.
- Tarafdar JC, Sharma S, Raliya R. 2013. Nanotechnology: interdisciplinary science of applications. Afr. J. Biotechnol. 12: 219-226. https://doi.org/10.5897/AJB12.2481
- Tong Z, Bischoff M, Nies L, Applegate B, Turco R. 2007. Impact of fullerence (C60) on a soil microbial community. Environ. Sci. Technol. 51: 2985-2991.
- Tourinho PS, van Gestel CAM, Lpfts S. Svendsen C, Soares AMVM, Loureiro S. 2012. Metal based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ. Toxicol. Chem. 31: 1679-1692. https://doi.org/10.1002/etc.1880
- US Environmental Protection Agency. 1996. Ecological effects test guidelines, OPPTS 850. 4200. Seed germination/root elongation toxicity test. US Environmental Protection Agency, Washington, DC.
- Zhu H, Han J, Xiao JQ, Jin Y. 2008. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit. 10: 713-717. https://doi.org/10.1039/b805998e
Cited by
- Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? vol.54, pp.9, 2013, https://doi.org/10.1002/jobm.201400298
- Assessment of the Phytotoxicity of Metal Oxide Nanoparticles on Two Crop Plants, Maize ( Zea mays L.) and Rice ( Oryza sativa L.) vol.12, pp.12, 2013, https://doi.org/10.3390/ijerph121214963
- The study of mechanisms of biological activity of copper oxide nanoparticle CuO in the test for seedling roots of Triticum vulgare vol.24, pp.11, 2013, https://doi.org/10.1007/s11356-017-8549-9
- Impact of Agri-Usable Nanocompounds on Soil Microbial Activity: An Indicator of Soil Health : Soil vol.45, pp.5, 2013, https://doi.org/10.1002/clen.201600458
- Soil pH effects on the toxicity of zinc oxide nanoparticles to soil microbial community vol.25, pp.28, 2013, https://doi.org/10.1007/s11356-018-2833-1
- The effect of zirconium oxide nanoparticles on dehydrogenase and hydrolytic activity of activated sludge microorganisms vol.44, pp.None, 2013, https://doi.org/10.1051/e3sconf/20184400034
- Copper Nanoparticles Induced Genotoxicty, Oxidative Stress, and Changes in Superoxide Dismutase (SOD) Gene Expression in Cucumber ( Cucumis sativus ) Plants vol.9, pp.None, 2013, https://doi.org/10.3389/fpls.2018.00872
- Effects of Copper Nanoparticles (CuO NPs) on Crop Plants: a Mini Review vol.8, pp.1, 2013, https://doi.org/10.1007/s12668-017-0466-3
- Visible-Light-Driven Catalytic Disinfection of Staphylococcus aureus Using Sandwich Structure g-C3N4/ZnO/Stellerite Hybrid Photocatalyst vol.28, pp.6, 2013, https://doi.org/10.4014/jmb.1712.12057
- Toxicological Effect of Metal Oxide Nanoparticles on Soil and Aquatic Habitats vol.75, pp.2, 2018, https://doi.org/10.1007/s00244-018-0519-9
- Nanoparticle-Induced Changes in Resistance and Resilience of Sensitive Microbial Indicators towards Heat Stress in Soil vol.11, pp.3, 2013, https://doi.org/10.3390/su11030862
- Ecotoxicity of Copper, Nickel, and Zinc Nanoparticles Assessment on the Basis of Biological Indicators of Chernozems vol.52, pp.8, 2019, https://doi.org/10.1134/s106422931908009x
- Impact of Metal-Based Nanoparticles on Cambisol Microbial Functionality, Enzyme Activity, and Plant Growth vol.10, pp.10, 2013, https://doi.org/10.3390/plants10102080
- Influence of Inorganic Metal (Ag, Cu) Nanoparticles on Biological Activity and Biochemical Properties of Brassica napus Rhizosphere Soil vol.11, pp.12, 2013, https://doi.org/10.3390/agriculture11121215
- Effects of copper oxide nanoparticles on Salix growth, soil enzyme activity and microbial community composition in a wetland mesocosm vol.424, pp.no.pd, 2013, https://doi.org/10.1016/j.jhazmat.2021.127676
- Fate, bioaccumulation and toxicity of engineered nanomaterials in plants: Current challenges and future prospects vol.811, pp.None, 2022, https://doi.org/10.1016/j.scitotenv.2021.152249