DOI QR코드

DOI QR Code

Influence of Metal Oxide Particles on Soil Enzyme Activity and Bioaccumulation of Two Plants

  • Kim, Sunghyun (School of Civil and Environmental Engineering, Yonsei University) ;
  • Sin, Hyunjoo (Division of EcoScience, Ewha Womans University) ;
  • Lee, Sooyeon (Division of EcoScience, Ewha Womans University) ;
  • Lee, Insook (Division of EcoScience, Ewha Womans University)
  • Received : 2013.04.29
  • Accepted : 2013.06.04
  • Published : 2013.09.28

Abstract

Particle size and metal species are important to both soil microbial toxicity and phytotoxicity in the soil ecosystem. The effects of CuO and ZnO nanoparticles (NPs) and microparticles (MPs) on soil microbial toxicity, phytotoxicity, and bioaccumulation in two crops (Cucumis sativus and Zea mays) were estimated in a soil microcosm. In the microcosm system, soil was artificially contaminated with 1,000 mg/kg CuO and ZnO NPs and MPs. After 15 days, we compared the microbial toxicity and phytotoxicity by particle size. In addition, C. sativus and Z. mays were cultivated in soils treated with CuO NPs and ZnO NPs, after which the treatment effects on bioaccumulation were evaluated. NPs were more toxic than MPs to microbes and plants in the soil ecosystem. We found that the soil enzyme activity and plant biomass were inhibited to the greatest extent by CuO NPs. However, in a Biolog test, substrate utilization patterns were more dependent upon metal type than particle size. Another finding indicated that the metal NP uptake amounts of plants depend on the plant species. In the comparison between C. sativus and Z. mays, the accumulation of Cu and Zn by C. sativus was noticeably higher. These findings show that metal oxide NPs may negatively impact soil bacteria and plants. In addition, the accumulation patterns of NPs depend on the plant species.

Keywords

References

  1. An YJ. 2004. Soil ecotoxicity assessment using cadmium sensitive plants. Environ. Pollut. 127: 21-26. https://doi.org/10.1016/S0269-7491(03)00263-X
  2. Aruoja V, Dubourguier H, Kasemets K, Kahru A. 2009. Toxicity of nanoparticles of CuO, ZnO and $TiO_2$ to microalgae Pseudokirchneriella subcapitata. Sci. Total Environ. 407: 1461-1468. https://doi.org/10.1016/j.scitotenv.2008.10.053
  3. Das P, Samantaray S, Rout GR. 1997. Studies on cadmium toxicity in plants: a review. Environ. Pollut. 98: 29-36. https://doi.org/10.1016/S0269-7491(97)00110-3
  4. Harris AT, Bali R. 2008. On the formation and extent of uptake of silver nanoparticles by live plants. J. Nanopart. Res. 10: 691-695. https://doi.org/10.1007/s11051-007-9288-5
  5. International Council on Nanotechnology. 2008. Nano Good Practices Wiki. Available at http://icon.rice.edu/projects.cfm?doc_id=12207
  6. Jemec A, Drobne D, Remskar M, Sepcic K, Tisler T. 2008. Effects of ingested nano-sized titanium dioxide on terrestrial isopods (Porcellio scaber). Environ. Toxicol. Chem. 27: 1904-1914. https://doi.org/10.1897/08-036.1
  7. Johansen A, Pedersen AL, Jensen KA, Karlson U, Hansen BM, Scott-Fordsmand JJ, et al. 2008. Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ. Sci. Technol. 27: 1895-1903.
  8. Kasemets K, Ivask A, Dubourguier H, Kahru A. 2009. Toxicity of nanoparticles of ZnO, CuO and $TiO_2$ to yeast Saccharomyces cerevisiae. Toxicol. In Vitro 23: 1116-1122. https://doi.org/10.1016/j.tiv.2009.05.015
  9. Kim S, Lim H, Lee I. 2010. Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates. J. Biosci. Bioeng. 109: 47-50. https://doi.org/10.1016/j.jbiosc.2009.06.018
  10. Kim S, Lee S, Lee I. 2012. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil Pollut. 223: 2799-2806. https://doi.org/10.1007/s11270-011-1067-3
  11. Kim S, Kim J, Lee I. 2011. Effects of Zn and ZnO nanoparticles and $Zn^{2+}$ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. Chem. Ecol. 27: 49-55. https://doi.org/10.1080/02757540.2010.529074
  12. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. 2008. Nanomaterials in the environment: behaviour, fate, bioavailability, and effects. Environ. Sci. Technol. 27: 1825-1851.
  13. Lee S, Kim SY, Kim S, Lee I. 2012. Effects of soil-plant interactive system on response to exposure to ZnO nanoparticles. J. Microbiol. Biotechnol. 22: 1264-1270. https://doi.org/10.4014/jmb.1203.03004
  14. Lee S, Kim S, Kum SY, Lee I. 2013. Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum. Environ. Sci. Pollut. Res. 20: 848-854. https://doi.org/10.1007/s11356-012-1069-8
  15. Lin D, Xing B. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut. 150: 243-250. https://doi.org/10.1016/j.envpol.2007.01.016
  16. Lin D, Xing B. 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 42: 5580-5585. https://doi.org/10.1021/es800422x
  17. Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T, et al. 2008. Formation of metallic copper manoparticles at the soil-root interface. Environ. Sci. Technol. 42: 1766-1772. https://doi.org/10.1021/es072017o
  18. Mortimer M, Kasemets K, Kahru A. 2010. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology 269: 182-189. https://doi.org/10.1016/j.tox.2009.07.007
  19. Nannipieri P, Kandeler E, Ruggiero P. 2002. Enzyme activities and microbiological and biochemical processes in soil, pp. 1-33. In Burns RG, Dick RP (eds.). Enzymes in the Environment. Activity, Ecology and Applications. Marcel Dekker, NY.
  20. Nel A, Xia T, Moedler L, Li N. 2006. Toxic potential of materials at nanolevel. Science 311: 622-627. https://doi.org/10.1126/science.1114397
  21. Nowack B, Bucheli TD. 2007. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150: 5-22. https://doi.org/10.1016/j.envpol.2007.06.006
  22. Pipan-Tkalec Z, Drobne D, Jemec A, Romih T, Zidar P, Bele M. 2010. Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or $ZnCl_2$ solution. Toxicology 269: 198-203. https://doi.org/10.1016/j.tox.2009.08.004
  23. Shah V, Belozerova I. 2009. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seed. Water Air Soil Pollut. 197: 143-148. https://doi.org/10.1007/s11270-008-9797-6
  24. Sukul P. 2006. Enzymatic activities and microbial biomass in soil as influenced by metalaxy residues. Soil Biol. Biochem. 38: 320-326. https://doi.org/10.1016/j.soilbio.2005.05.009
  25. Susarla S, Medina VF, McCutcheon SC. 2002. Phytoremediation: an ecological solution to organic chemical contamination. Ecol. Eng. 19: 647-668.
  26. Tabatabai MA. 1982. Soil enzymes, pp. 903-904. In Page AL (ed.). Methods of Soil Analysis, Part 2 Agronomy Monograph. American Society of Agronomy, Madison, WI.
  27. Tabatabai MA. 1994. Soil enzymes, pp. 775-833. In Weaver RW, Angle S, Bottomley P (eds.). Methods of Soil Analysis. Part 2: Microbiological and Biochemical Properties. Soil Science Society of America, Madison, WI.
  28. Tarafdar JC, Sharma S, Raliya R. 2013. Nanotechnology: interdisciplinary science of applications. Afr. J. Biotechnol. 12: 219-226. https://doi.org/10.5897/AJB12.2481
  29. Tong Z, Bischoff M, Nies L, Applegate B, Turco R. 2007. Impact of fullerence (C60) on a soil microbial community. Environ. Sci. Technol. 51: 2985-2991.
  30. Tourinho PS, van Gestel CAM, Lpfts S. Svendsen C, Soares AMVM, Loureiro S. 2012. Metal based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ. Toxicol. Chem. 31: 1679-1692. https://doi.org/10.1002/etc.1880
  31. US Environmental Protection Agency. 1996. Ecological effects test guidelines, OPPTS 850. 4200. Seed germination/root elongation toxicity test. US Environmental Protection Agency, Washington, DC.
  32. Zhu H, Han J, Xiao JQ, Jin Y. 2008. Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J. Environ. Monit. 10: 713-717. https://doi.org/10.1039/b805998e

Cited by

  1. Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? vol.54, pp.9, 2013, https://doi.org/10.1002/jobm.201400298
  2. Assessment of the Phytotoxicity of Metal Oxide Nanoparticles on Two Crop Plants, Maize ( Zea mays L.) and Rice ( Oryza sativa L.) vol.12, pp.12, 2013, https://doi.org/10.3390/ijerph121214963
  3. The study of mechanisms of biological activity of copper oxide nanoparticle CuO in the test for seedling roots of Triticum vulgare vol.24, pp.11, 2013, https://doi.org/10.1007/s11356-017-8549-9
  4. Impact of Agri-Usable Nanocompounds on Soil Microbial Activity: An Indicator of Soil Health : Soil vol.45, pp.5, 2013, https://doi.org/10.1002/clen.201600458
  5. Soil pH effects on the toxicity of zinc oxide nanoparticles to soil microbial community vol.25, pp.28, 2013, https://doi.org/10.1007/s11356-018-2833-1
  6. The effect of zirconium oxide nanoparticles on dehydrogenase and hydrolytic activity of activated sludge microorganisms vol.44, pp.None, 2013, https://doi.org/10.1051/e3sconf/20184400034
  7. Copper Nanoparticles Induced Genotoxicty, Oxidative Stress, and Changes in Superoxide Dismutase (SOD) Gene Expression in Cucumber ( Cucumis sativus ) Plants vol.9, pp.None, 2013, https://doi.org/10.3389/fpls.2018.00872
  8. Effects of Copper Nanoparticles (CuO NPs) on Crop Plants: a Mini Review vol.8, pp.1, 2013, https://doi.org/10.1007/s12668-017-0466-3
  9. Visible-Light-Driven Catalytic Disinfection of Staphylococcus aureus Using Sandwich Structure g-C3N4/ZnO/Stellerite Hybrid Photocatalyst vol.28, pp.6, 2013, https://doi.org/10.4014/jmb.1712.12057
  10. Toxicological Effect of Metal Oxide Nanoparticles on Soil and Aquatic Habitats vol.75, pp.2, 2018, https://doi.org/10.1007/s00244-018-0519-9
  11. Nanoparticle-Induced Changes in Resistance and Resilience of Sensitive Microbial Indicators towards Heat Stress in Soil vol.11, pp.3, 2013, https://doi.org/10.3390/su11030862
  12. Ecotoxicity of Copper, Nickel, and Zinc Nanoparticles Assessment on the Basis of Biological Indicators of Chernozems vol.52, pp.8, 2019, https://doi.org/10.1134/s106422931908009x
  13. Impact of Metal-Based Nanoparticles on Cambisol Microbial Functionality, Enzyme Activity, and Plant Growth vol.10, pp.10, 2013, https://doi.org/10.3390/plants10102080
  14. Influence of Inorganic Metal (Ag, Cu) Nanoparticles on Biological Activity and Biochemical Properties of Brassica napus Rhizosphere Soil vol.11, pp.12, 2013, https://doi.org/10.3390/agriculture11121215
  15. Effects of copper oxide nanoparticles on Salix growth, soil enzyme activity and microbial community composition in a wetland mesocosm vol.424, pp.no.pd, 2013, https://doi.org/10.1016/j.jhazmat.2021.127676
  16. Fate, bioaccumulation and toxicity of engineered nanomaterials in plants: Current challenges and future prospects vol.811, pp.None, 2022, https://doi.org/10.1016/j.scitotenv.2021.152249