DOI QR코드

DOI QR Code

Biocontrol of Pectobacterium carotovorum subsp. carotovorum Using Bacteriophage PP1

  • Lim, Jeong-A (Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration) ;
  • Jee, Samnyu (Highland Agriculture Research Center, National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Dong Hwan (Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration) ;
  • Roh, Eunjung (Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration) ;
  • Jung, Kyusuk (Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration) ;
  • Oh, Changsik (Department of Horticultural Biotechnology and Institute of Life Science and Resources, Kyung Hee University) ;
  • Heu, Sunggi (Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration)
  • Received : 2013.04.02
  • Accepted : 2013.05.08
  • Published : 2013.08.28

Abstract

Pectobacterium carotovorum subsp. carotovorum (formerly Erwinia carotovora subsp. carotovora) is a plant pathogen that causes soft rot and stem rot diseases in several crops, including Chinese cabbage, potato, and tomato. To control this bacterium, we isolated a bacteriophage, PP1, with lytic activity against P. carotovorum subsp. carotovorum. Transmission electron microscopy revealed that the PP1 phage belongs to the Podoviridae family of the order Caudovirales, which exhibit icosahedral heads and short non-contractile tails. PP1 phage showed high specificity for P. carotovorum subsp. carotovorum, and several bacteria belonging to different species and phyla were resistant to PP1. This phage showed rapid and strong lytic activity against its host bacteria in liquid medium and was stable over a broad range of pH values. Disease caused by P. carotovorum subsp. carotovorum was significantly reduced by PP1 treatment. Overall, PP1 bacteriophage effectively controls P. carotovorum subsp. carotovorum.

Keywords

References

  1. Baghaee-Ravari S, Rahimian H, Shams-Bakhsh M, Lopez- Solanilla E, Antunez-Lamas M, Rodriguez-Palenzuela P. 2011. Characterization of Pectobacterium species from Iran using biochemical and molecular methods. Eur. J. Plant Pathol. 129: 413-425. https://doi.org/10.1007/s10658-010-9704-z
  2. Bender CL, Malvick DK, Conway KE, George S, Pratt P. 1990. Characterization of pXV10A, a copper resistance plasmid in Xanthomonas campestris pv. vesicatoria. Appl. Environ. Microbiol. 56: 170-175.
  3. Brussow H. 2005. Phage therapy: the Escherichia coli experience. Microbiology 151: 2133-2140. https://doi.org/10.1099/mic.0.27849-0
  4. Byrne J, Dianese A, Ji P, Campbell H, Cuppels D, Louws F, et al. 2005. Biological control of bacterial spot of tomato under field conditions at several locations in North America. Biol. Control 32: 408-418. https://doi.org/10.1016/j.biocontrol.2004.12.001
  5. Carvalho CM, Gannon BW, Halfhide DE, Santos SB, Hayes CM, Roe JM, et al. 2010. The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiol. 10: 232. https://doi.org/10.1186/1471-2180-10-232
  6. Cooksey DA. 1990. Genetics of bactericide resistance in plant pathogenic bacteria. Annu. Rev. Phytopathol. 28: 201-219. https://doi.org/10.1146/annurev.py.28.090190.001221
  7. Eayre C, Bartz J, Concelmo D. 1995. Bacteriophages of Erwinia carotovora and Erwinia ananas isolated from freshwater lakes. Plant Dis. 79: 801. https://doi.org/10.1094/PD-79-0801
  8. Fauquet C. 2005. Virus taxonomy; classification and nomenclature of viruses. 8th Report of the International Committee on the Taxonomy of Viruses. Elsevier Academic Press, San Diego, CA.
  9. Frampton RA, Pitman AR, Fineran PC. 2012. Advances in bacteriophage-mediated control of plant pathogens. Int. J. Microbiol. DOI: 10.1155/2012/326452.
  10. Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM. 2010. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob. Agents Chemother. 54: 397-404. https://doi.org/10.1128/AAC.00669-09
  11. Gardan L, Gouy C, Christen R, Samson R. 2003. Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int. J. Syst. Evol. Microbiol. 53: 381-391. https://doi.org/10.1099/ijs.0.02423-0
  12. Gross D, Powelson M, Regner K, Radamaker G. 1991. A bacteriophage-typing system for surveying the diversity and distribution of strains of Erwinia carotovora in potato fields. Phytopathology 81: 220-226. https://doi.org/10.1094/Phyto-81-220
  13. Gupta R, Prasad Y. 2011. P-27/HP endolysin as antibacterial agent for antibiotic resistant Staphylococcus aureus of human infections. Curr. Microbiol. 63: 39-45. https://doi.org/10.1007/s00284-011-9939-8
  14. Hauben L, Moore ERB, Vauterin L, Steenackers M, Mergaert J, Verdonck L, et al. 1998. Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst. Appl. Microbiol. 21: 384-397. https://doi.org/10.1016/S0723-2020(98)80048-9
  15. Hill C. 1993. Bacteriophage and bacteriophage resistance in lactic acid bacteria. FEMS Microbiol. Rev. 12: 87-108. https://doi.org/10.1111/j.1574-6976.1993.tb00013.x
  16. Jee S, Malhotra S, Roh E, Jung K, Lee D, Choi J, et al. Isolation of bacteriophages which can infect Pectobacteirum carotovorum subsp. carotovorum. Res. Plant Dis. 18: 225-230. https://doi.org/10.5423/RPD.2012.18.3.225
  17. Ji P, Campbell H, Kloepper J, Jones J, Suslow T, Wilson M. 2006. Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growth-promoting rhizobacteria. Biol. Control 36: 358-367. https://doi.org/10.1016/j.biocontrol.2005.09.003
  18. Jones J, Jackson L, Balogh B, Obradovic A, Iriarte F, Momol M. 2007. Bacteriophages for plant disease control. Annu. Rev. Phytopathol. 45: 245-262. https://doi.org/10.1146/annurev.phyto.45.062806.094411
  19. Kim M, Ryu S. 2011. Characterization of a T5-like coliphage, SPC35, and differential development of resistance to SPC35 in Salmonella enterica serovar Typhimurium and Escherichia coli. Appl. Environ. Microbiol. 77: 2042-2050. https://doi.org/10.1128/AEM.02504-10
  20. Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP. 2009. Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol. Biol. 501: 69-76. https://doi.org/10.1007/978-1-60327-164-6_7
  21. Leclercq R, Derlot E, Duval J, Courvalin P. 1988. Plasmidmediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N. Engl. J. Med. 319: 157-161. https://doi.org/10.1056/NEJM198807213190307
  22. Lee JH, Shin H, Ji S, Malhotra S, Kumar M, Ryu S, et al. 2012. Complete genome sequence of phytopathogenic Pectobacterium carotovorum subsp. carotovorum bacteriophage PP1. J. Virol. 86: 8899-8900. https://doi.org/10.1128/JVI.01283-12
  23. Lopez-Cuevas O, Castro-Del Campo N, Leon-Felix J, Gonzalez-Robles A, Chaidez C. 2011. Characterization of bacteriophages with a lytic effect on various Salmonella serotypes and Escherichia coli O157:H7. Can. J. Microbiol. 57: 1042-1051. https://doi.org/10.1139/w11-099
  24. Marquez-Villavicencio Mdel P, Weber B, Witherell RA, Willis DK, Charkowski AO. 2011. The 3-hydroxy-2-butanone pathway is required for Pectobacterium carotovorum pathogenesis. PLoS One 6: e22974. https://doi.org/10.1371/journal.pone.0022974
  25. McManus PS, Stockwell VO, Sundin GW, Jones AL. 2002. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40: 443-465. https://doi.org/10.1146/annurev.phyto.40.120301.093927
  26. O'Flynn G, Ross R, Fitzgerald G, Coffey A. 2004. Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157: H7. Appl. Environ. Microbiol. 70: 3417- 3424. https://doi.org/10.1128/AEM.70.6.3417-3424.2004
  27. Ravensdalea M, Blom TJ, Gracia-Garza JA, Svircev AM, Smithc RJ. 2007. Bacteriophages and the control of Erwinia carotovora subsp. carotovora. Can. J. Plant Pathol. 29: 121-130. https://doi.org/10.1080/07060660709507448
  28. Roh E, Lee S, Lee Y, Ra D, Choi J, Moon E, et al. 2009. Diverse antibacterial activity of Pectobacterium carotovorum subsp. carotovorum isolated in Korea. J. Microbiol. Biotechnol. 19: 42-50.
  29. Roh E , Park TH, Kim MI, Lee S, Ryu S , Oh CS, et al. 2010. Characterization of a new bacteriocin, Carocin D, from Pectobacterium carotovorum subsp. carotovorum Pcc21. Appl. Environ. Microbiol. 76: 7541-7549. https://doi.org/10.1128/AEM.03103-09
  30. Stackebrandt E, Murray R, Truper H. 1988. Proteobacteria classis nov., a name for the phylogenetic taxon that includes the "purple bacteria and their relatives". Int. J. Syst. Evol. Microbiol. 38: 321-325.
  31. Stali R, Loschke D, Jones J. 1986. Linkage of copper resistance and avirulence loci on a self-transmissible plasmid in Xanthomonas campestris pv. vesicatoria. Mol. Plant Pathol. 76: 240-243.
  32. Sundin G, Bender C. 1993. Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 59: 1018-1024.
  33. Tanji Y, Shimada T, Yoichi M, Miyanaga K, Hori K, Unno H. 2004. Toward rational control of Escherichia coli O157: H7 by a phage cocktail. Appl. Microbiol. Biotechnol. 64: 270-274. https://doi.org/10.1007/s00253-003-1438-9
  34. Whitehead NA, Byers JT, Commander P, Corbett MJ, Coulthurst SJ, Everson L, et al. 2002. The regulation of virulence in phytopathogenic Erwinia species: quorum sensing, antibiotics and ecological considerations. Antonie Van Leeuwenhoek 81: 223-231. https://doi.org/10.1023/A:1020570802717
  35. Williams KP, Gillespie JJ, Sobral BW, Nordberg EK, Snyder EE, Shallom JM, et al. 2010. Phylogeny of gammaproteobacteria. J. Bacteriol. 192: 2305-2314. https://doi.org/10.1128/JB.01480-09

Cited by

  1. Phage Therapy: Eco-Physiological Pharmacology vol.2014, pp.None, 2013, https://doi.org/10.1155/2014/581639
  2. Complete genome sequence of the Pectobacterium carotovorum subsp. carotovorum virulent bacteriophage PM1 vol.159, pp.8, 2014, https://doi.org/10.1007/s00705-014-2005-7
  3. Phages in the global fruit and vegetable industry vol.118, pp.3, 2013, https://doi.org/10.1111/jam.12700
  4. Isolation and Genomic Characterization of the T4-Like Bacteriophage PM2 Infecting Pectobacterium carotovorum subsp. carotovorum vol.31, pp.1, 2015, https://doi.org/10.5423/ppj.nt.09.2014.0099
  5. OmpF ofPectobacterium carotovorumsubsp.carotovorumPcc3 is required for carocin D sensitivity vol.363, pp.23, 2013, https://doi.org/10.1093/femsle/fnw258
  6. Isolation and Characterization of Bacteriophages Against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit vol.26, pp.2, 2013, https://doi.org/10.4014/jmb.1509.09012
  7. Bacteriophages of Soft RotEnterobacteriaceae-a minireview vol.363, pp.2, 2013, https://doi.org/10.1093/femsle/fnv230
  8. Biocontrol of the Potato Blackleg and Soft Rot Diseases Caused by Dickeya dianthicola vol.82, pp.1, 2013, https://doi.org/10.1128/aem.02525-15
  9. Isolation and Characterization of Bacteriophages Infecting Ralstonia solanacearum from Potato Fields vol.22, pp.4, 2013, https://doi.org/10.5423/rpd.2016.22.4.236
  10. Genomic characterization of bacteriophage vB_PcaP_PP2 infecting Pectobacterium carotovorum subsp. carotovorum , a new member of a proposed genus in the subfamily Autographivirinae vol.162, pp.8, 2017, https://doi.org/10.1007/s00705-017-3349-6
  11. Bacteriophages and Bacterial Plant Diseases vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.00034
  12. Complete genome sequence of DU_RP_II, a novel Ralstonia solanacearum phage of the family Podoviridae vol.163, pp.1, 2013, https://doi.org/10.1007/s00705-017-3577-9
  13. First Isolation and Molecular Characterization of Bacteriophages Infecting Acidovorax citrulli, the Causal Agent of Bacterial Fruit Blotch vol.34, pp.1, 2013, https://doi.org/10.5423/ppj.nt.08.2017.0190
  14. Novel N4-Like Bacteriophages of Pectobacterium atrosepticum vol.11, pp.2, 2013, https://doi.org/10.3390/ph11020045
  15. Characterization of the Lytic Bacteriophage phiEaP-8 Effective against Both Erwinia amylovora and Erwinia pyrifoliae Causing Severe Diseases in Apple and Pear vol.34, pp.5, 2013, https://doi.org/10.5423/ppj.nt.06.2018.0100
  16. Colanic Acid Is a Novel Phage Receptor of Pectobacterium carotovorum subsp. carotovorum Phage POP72 vol.10, pp.None, 2013, https://doi.org/10.3389/fmicb.2019.00143
  17. Bacteriophages Isolated in China for the Control of Pectobacterium carotovorum Causing Potato Soft Rot in Kenya vol.34, pp.3, 2013, https://doi.org/10.1007/s12250-019-00091-7
  18. Natural Farming Improves Soil Quality and Alters Microbial Diversity in a Cabbage Field in Japan vol.11, pp.11, 2013, https://doi.org/10.3390/su11113131
  19. Macrolactin a is the key antibacterial substance of Bacillus amyloliquefaciens D2WM against the pathogen Dickeya chrysanthemi vol.155, pp.2, 2013, https://doi.org/10.1007/s10658-019-01774-3
  20. Efficacy of potent antagonistic yeastWickerhamiella versatilisagainst soft rot disease of potato caused byPectobacterium carotovorumsubsp. carotovorum vol.52, pp.15, 2013, https://doi.org/10.1080/03235408.2019.1693236
  21. Preparation and evaluation of a new biopesticide solution candidate for plant disease control using pexiganan gene and Pichia pastoris expression system vol.17, pp.None, 2013, https://doi.org/10.1016/j.genrep.2019.100509
  22. Morphologically Different Pectobacterium brasiliense Bacteriophages PP99 and PP101: Deacetylation of O-Polysaccharide by the Tail Spike Protein of Phage PP99 Accompanies the Infection vol.10, pp.None, 2013, https://doi.org/10.3389/fmicb.2019.03147
  23. Potential of a Quorum Quenching Bacteria Isolate Ochrobactrum intermedium D-2 Against Soft Rot Pathogen Pectobacterium carotovorum subsp. carotovorum vol.11, pp.None, 2013, https://doi.org/10.3389/fmicb.2020.00898
  24. Phage cocktail containing Podoviridae and Myoviridae bacteriophages inhibits the growth of Pectobacterium spp. under in vitro and in vivo conditions vol.15, pp.4, 2020, https://doi.org/10.1371/journal.pone.0230842
  25. Isolation and Characterization of Pseudomonas aeruginosa and its Virulent Bacteriophages vol.23, pp.4, 2013, https://doi.org/10.3923/pjbs.2020.491.500
  26. Bacteriophage Usage for Bacterial Disease Management and Diagnosis in Plants vol.36, pp.3, 2013, https://doi.org/10.5423/ppj.rw.04.2020.0074
  27. Engineering acyl-homoserine lactone-interfering enzymes toward bacterial control vol.295, pp.37, 2013, https://doi.org/10.1074/jbc.rev120.013531
  28. Biochemical and Molecular Characteristics of Pc1 Virulent Phage Isolate Infecting Pectobacterium carotovorum vol.23, pp.11, 2013, https://doi.org/10.3923/pjbs.2020.1481.1486
  29. Pectobacterium Phage Jarilo Displays Broad Host Range and Represents a Novel Genus of Bacteriophages Within the Family Autographiviridae vol.1, pp.4, 2020, https://doi.org/10.1089/phage.2020.0037
  30. Terpenoid Constituents of Perovskia artemisioides Aerial Parts with Inhibitory Effects on Bacterial Biofilm Growth vol.84, pp.1, 2013, https://doi.org/10.1021/acs.jnatprod.0c00832
  31. Biocontrol of Soft Rot Caused by Pectobacterium odoriferum with Bacteriophage phiPccP-1 in Kimchi Cabbage vol.9, pp.4, 2013, https://doi.org/10.3390/microorganisms9040779
  32. Use of a Specific Phage Cocktail for Soft Rot Control on Ware Potatoes: A Case Study vol.13, pp.6, 2013, https://doi.org/10.3390/v13061095
  33. Bacteriophage liquid formulation: A potential green tool for the management of pomegranate bacterial blight vol.158, pp.None, 2013, https://doi.org/10.1016/j.biocontrol.2021.104597
  34. Tailed Lytic Bacteriophages of Soft Rot Pectobacteriaceae vol.9, pp.9, 2013, https://doi.org/10.3390/microorganisms9091819