DOI QR코드

DOI QR Code

Probing of Potential Luminous Bacteria in Bay of Bengal and Its Enzyme Characterization

  • Balan, Senthil S. (CAS Marine Biology, Annamalai University) ;
  • Raffi, S.M. (CAS Marine Biology, Annamalai University) ;
  • Jayalakshmi, S. (CAS Marine Biology, Annamalai University)
  • Received : 2012.06.11
  • Accepted : 2013.02.02
  • Published : 2013.06.28

Abstract

The present study dealt with the isolation, identification and enzyme characterization of potential luminous bacteria from water, sediment, squid, and cuttle fish samples of the Karaikal coast, Bay of Bengal, India during the study period September 2007 - August 2008. Bioluminescent strains were screened in SWC agar and identified using biochemical tests. As Shewanella henadai was found to be the most common and abundant species with maximum light emission [69,702,240 photons per second (pps)], the optimum ranges of various physicochemical parameters that enhance the luciferase activity in Shewanella hanedai were worked out. The maximum luciferase activity was observed at the temperature of $25^{\circ}C$ (69,674,387 pps), pH of 8.0 (70,523,671 pps), salinity of 20 ppt (71,674,387 pps), incubation period of 16 h (69,895,714 pps), 4% peptone (70,895,152 pps) as nitrogen source, 0.9% glycerol (71,625,196 pps), and the ionic supplements of 0.3% $CaCO_3$ (73,991,591 pps), 0.3% $K_2HPO_4$ (73,919,915 pps), and 0.2% $MgSO_4$ (72,161,155 pps). Shewanella hanedai was cultured at optimum ranges for luciferase enzyme characterization. From the centrifuged supernatant, the proteins were precipitated with 60% ammonium sulfate, dialyzed, and purified using anion-exchange chromatography, and then luciferase was eluted with 500 mM phosphate of pH 7.0. The purified luciferase enzyme was subjected to SDS-PAGE and the molecular mass was determined as 78 kDa.

Keywords

References

  1. Abraham, J., T. R. Palaniappan, and K. Dhevendaran. 1999. Simple taxonomic key for identifying marine luminous bacteria. Indian J. Marine Sci. 28: 35-38.
  2. Atlas, R. M. 1946. Handbook of Microbiological Media, 3rd Ed. CRC Press.
  3. Bourgois, J. J., F. E. Sluse, F. Baguet, and J. Mallefet. 2001. Kinetics of light emission and oxygen consumption by bioluminescent bacteria. J. Bioenerg. Biomembr. 33: 4.
  4. Bryant, T. N., J. V. Lee, P. A. West, and R. R. Colwell. 1986. A probability matrix for the identification of species of Vibrio and related genera. J. Appl. Bacteriol. 61: 469. https://doi.org/10.1111/j.1365-2672.1986.tb04309.x
  5. Clark, C., A. Brian, W. Noland, and T. O. Baldwin. 2000. A rapid chromatographic method to separate the subunits of bacterial luciferase in urea-containing buffer. Methods Enzymol. 305: 157-164. https://doi.org/10.1016/S0076-6879(00)05485-9
  6. Dixon, M. and E. C. Webb. 1961. Enzyme fractionation by salting-out: A theoretical note. Adv. Protein Chem. 16: 197.
  7. Farmer, J. and J. M. Janda. 2001. Family Vibrionaceae, pp. 491-555. In D. Brenner, N. R. Krieg, and J. T. Staley (eds.). Bergy's Manual of Systematic Bacteriology. Springer, New York.
  8. Greenberg, E. P. 1997. Quorum sensing in Gram-negative bacteria. ASM 63: 371-377.
  9. Halldorson, N. and N. L Duran. 2003. Bioluminescent bacteria: Lux genes as environmental biosensors. Braz. J. Microbiol. 34: 91-96. https://doi.org/10.1590/S1517-83822003000100019
  10. Hames, B. D. and D. Rickwood (Eds.). 1990. Gel Electrophoresis of Proteins - A Practical Approach, 2nd Ed. IRL Press, Oxford.
  11. Hastings, J. W. and R. P. Presswood. 1978. Bacterial luciferase: FMNH2-aldehyde oxidase luciferases. Methods Enzymol. 53: 558-570. https://doi.org/10.1016/S0076-6879(78)53057-7
  12. Hastings, J. W., T. O. Baldwin, and M. Z. Nicoli. 1978. Bacterial luciferase: Assay, purification, and properties. Methods Enzymol. 57: 135. https://doi.org/10.1016/0076-6879(78)57016-X
  13. Haygood, M. G. 1993. Light organ symbioses in fishes. Crit. Rev. Microbiol. 19: 191-216. https://doi.org/10.3109/10408419309113529
  14. Hearing, P. J. 1987. Systematic distribution of bioluminescence in living organisms. J. Biolumin. Chemilumin. 1: 147-163. https://doi.org/10.1002/bio.1170010303
  15. Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's Manual of Determinative Bacteriology, Ninth Ed. Williams and Wilkins, Baltimore.
  16. Horry, H., A. Maul, and G. Thouand. 2007. Optimization of a bacterial bioluminescent biosensor through experimental design. Sens. Actuators B Chem. 127: 649-657. https://doi.org/10.1016/j.snb.2007.05.034
  17. Miguel, G. A., E. A. Meighen, M. Z. Nicoli, K. H. Nealson, and J. W. Hastings. 1972. Purification and properties of bacterial luciferase. J. Biol. Chem. 247: 398.
  18. Mitchell, G. and J. W. Hastings. 1971. A stable, inexpensive, solid-state photomultiplier photometer. Anal. Biochem. 39: 243. https://doi.org/10.1016/0003-2697(71)90481-7
  19. Nealson, K. H. and J. W. Hastings. 1979. Bacterial bioluminescence: Its control and ecological significance. Microbiol. Rev. 43: 496-518.
  20. Nishiguchi, M. K. and V. A. Nair. 2003. Evolution of pathogenicity and symbiosis in Vibrionaceae: A combined approach using molecules and physiology. Int. J. Syst. Bacteriol. 53: 2019-2026. https://doi.org/10.1099/ijs.0.02792-0
  21. Ramesh, A. 1986. Ecophysiological studies on luminous bacteria of Vellar estuary, pp. 148-153. PhD thesis, Annamalai University, Tamil Nadu, India.
  22. Ruby, E. G. and K. H. Nealson. 1978. Seasonal changes in species composition of luminous bacteria in near shore sea water. Limnol. Oceanogr. 23: 530-533. https://doi.org/10.4319/lo.1978.23.3.0530
  23. Ruby, E. G. and M. J. McFall-Ngai. 1992. A squid that glows in the night: Development of an animal-bacterial mutualism. J. Bacteriol. 174: 4865-4870. https://doi.org/10.1128/jb.174.15.4865-4870.1992
  24. Scheerer, S., F. Gomez, and D. Lloyd. 2006. Bioluminescence of Vibrio fischeri in continuous culture: Optimal conditions for stability and intensity of photoemission. J. Microbiol. Methods 67: 321-329. https://doi.org/10.1016/j.mimet.2006.04.010
  25. Soto, W., J. Gutierrez, M. D. Remmenga, and M. K. Nishiguchi. 2007. Salinity and temperature effects on physiological responses of Vibrio fischeri from diverse ecological niches. Microb. Ecol. 57: 140-150.
  26. Stabili, L., C. Gravili, S. M. Tredici, S. Piraino, A. Talà, F. Boero, and P. Alifano. 2008. Epibiotic Vibrio luminous bacteria isolated from some hydrozoa and bryozoa species. Microb. Ecol. 56: 625-636. https://doi.org/10.1007/s00248-008-9382-y
  27. Thomas, O. B., M. M. Ziegler., V. A. Green, and M. D. Thomas. 2000. Overexpression of bacterial luciferase and purification from recombinant sources. Methods Enzymol. 305: 6876-6879.
  28. Urakawa, H. and I. N. G. Rivera. 2006. Aquatic environment, pp. 175-189. In F. L. Thompson, B. Austin, and J. Swings (eds). The Biology of Vibrios. ASM, Washington, D.C.
  29. Waters, P. and D. Lloyd. 1985. Salt, pH, and temperature dependencies of growth and bioluminescence of three species of luminous bacteria analyzed on gradient plates. J. Gen. Microbiol. 131: 2865-2869.
  30. Welsh, D. K. and S. A. Kay. 2005. Bioluminescence imaging in living organisms. Curr. Opin. Biotechnol. 16: 73-78. https://doi.org/10.1016/j.copbio.2004.12.006