References
- Ahmed, S., S. Riaz, and A. Jamil. 2009. Molecular cloning of fungal xylanases: An overview. Appl. Microbiol. Biotechnol. 84: 19-35. https://doi.org/10.1007/s00253-009-2079-4
- Akpinar, O. and S. Bostanci. 2009. Xylooligosaccharide production from lignocellulosic wastes with Trichoderma longibrachiatum xylanase. J. Food Agric. Environ. 7: 70-74.
- Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
- Cai, H. Y., P. J. Shi, Y. G. Bai, H. Q. Huang, T. Z. Yuan, P. L. Yang, et al. 2011. A novel thermoacidophilic family 10 xylanase from Penicillium pinophilum C1. Process Biochem. 46: 2341-2346. https://doi.org/10.1016/j.procbio.2011.09.018
- Cheng, F., J. Sheng, R. Dong, Y. Men, L. Gan, and L. Shen. 2012. Novel xylanase from a Holstein cattle rumen metagenomic library and its application in xylooligosaccharide and ferulic acid production from wheat straw. J. Agric. Food Chem. 60: 12516-12524. https://doi.org/10.1021/jf302337w
- Collins, T., C. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
- Dhiman, S. S., J. Sharma, and B. Battan. 2008. Pretreatment processing of fabrics by alkalothermophilic xylanase from Bacillus stearothermophilus SDX. Enzyme Microb. Technol. 43: 262-269. https://doi.org/10.1016/j.enzmictec.2008.03.016
- Fang, H. Y., S. M. Chang, M. C. Hsieh, and T. J. Fang. 2007. Production, optimization growth conditions and properties of the xylanase from Aspergillus carneus M34. J. Mol. Catal. B Enzym. 49: 36-42. https://doi.org/10.1016/j.molcatb.2007.08.002
- Gaffney, M., S. Doyle, and R. Murphy. 2009. Optimization of xylanase production by Thermomyces lanuginosus in solid state fermentation. Biosci. Biotechnol. Biochem. 73: 2640-2644. https://doi.org/10.1271/bbb.90493
-
Guo, B., X. L. Chen, C. Y. Sun, B. C. Zhou, and Y. Z. Zhang. 2009. Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-
$\beta$ -1,4-xylanase from marine Glaciecola mesophila KMM 241. Appl. Microbiol. Biotechnol. 84: 1107-1115. https://doi.org/10.1007/s00253-009-2056-y - Jeffries, T. W. and Y. S. Jin. 2004. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63: 495-509. https://doi.org/10.1007/s00253-003-1450-0
- Kamra, P. and T. Satyanarayana. 2004. Xylanase production by the thermophilic mold Humicola lanuginosa in solid-state fermentation. Appl. Biochem. Biotechnol. 119: 145-157. https://doi.org/10.1385/ABAB:119:2:145
- Kim, D. Y., M. K. Han, H. W. Oh, K. S. Bae, T. S. Jeong, S. U. Kim, et al. 2010. Novel intracellular GH10 xylanase from Cohnella laeviribosi HY-21: Biocatalytic properties and alterations of substrate specificities by site-directed mutagenesis of Trp residues. Bioresource Technol. 101: 8814-8821. https://doi.org/10.1016/j.biortech.2010.06.023
- Lafond, M., A. Tauzin, V. Desseaux, E. Bonnin, E. H. Ajandouz, and T. Giardina. 2011. GH10 xylanase D from Penicillium funiculosum: Biochemical studies and xylooligosaccharide production. Microb. Cell Fact. 10: 20. https://doi.org/10.1186/1475-2859-10-20
- Li, N., K. Meng, Y. R. Wang, P. J. Shi, H. Y. Luo, Y. G. Bai, et al. 2008. Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Appl. Microbiol. Biotechnol. 80: 231-240. https://doi.org/10.1007/s00253-008-1533-z
- Li, N., P. J. Shi, P. L. Yang, Y. R. Wang, H. Y. Luo, Y. G. Bai, et al. 2009. Cloning, expression, and characterization of a new Streptomyces sp. S27 xylanase for which xylobiose is the main hydrolysis product. Appl. Biochem. Biotechnol. 159: 521-531. https://doi.org/10.1007/s12010-008-8411-0
- Li, X., E. Li, Y. Zhu, C. Teng, B. Sun, H. Song, and R. Yang. 2012. A typical endo-xylanase from Streptomyces rameus L2001 and its unique characteristics in xylooligosaccharide production. Carbohydr. Res. 359: 30-36. https://doi.org/10.1016/j.carres.2012.05.005
- Li, Y. L., C. L. Long, K. Kato, C. Y. Yang, and K. Sato. 2011. Indigenous knowledge and traditional conservation of hulless barley (Hordeum vulgare) germplasm resources in the Tibetan communities of Shangri-la, Yunnan, SW China. Genet. Resour. Crop. Evol. 58: 645-655. https://doi.org/10.1007/s10722-010-9604-2
- Lucena-Neto, S. D. and E. X. Ferreira-Filho. 2004. Purification and characterization of a new xylanase from Humicola grisea var. thermoidea. Braz. J. Microbiol. 35: 86-90.
- Luo, H. Y., J. Li, J. Yang, H. Wang, Y. H. Yang, H. Q. Huang, et al. 2009. A thermophilic and acid stable family-10 xylanase from the acidophilic fungus Bispora sp. MEY-1. Extremophiles 13: 849-857. https://doi.org/10.1007/s00792-009-0272-0
- Luo, H. Y., Y. Wang, J. Li, H. Wang, J. Yang, Y. H. Yang, et al. 2009. Cloning, expression and characterization of a novel acidic xylanase, XYL11B, from the acidophilic fungus Bispora sp. MEY-1. Enzyme Microb. Technol. 45: 126-133. https://doi.org/10.1016/j.enzmictec.2009.05.002
-
Masui, D. C., A. Zimbardi, F. H. M. Souza, L. H. S. Guimaraes, R. P. M. Furriel, and J. A. Jorge. 2012. Production of a xylosestimulated
$\beta$ -glucosidase and a cellulase-free thermostable xylanase by the thermophilic fungus Humicola brevis var. thermoidea under solid state fermentation. World J. Microbiol. Biotechnol. 28: 2689-2701. https://doi.org/10.1007/s11274-012-1079-1 - Menon, V., G. Prakash, A. Prabhune, and M. Rao. 2010. Biocatalytic approach for the utilization of hemicellulose for ethanol production from agricultural residue using thermostable xylanase and thermotolerant yeast. Bioresource Technol. 101: 5366-5373. https://doi.org/10.1016/j.biortech.2010.01.150
-
O'Connell, S. and G. Walsh. 2007. Purification and properties of a
$\beta$ -galactosidase with potential application as a digestive supplement. Appl. Biochem. Biotechnol. 141: 1-13. https://doi.org/10.1007/s12010-007-9206-4 - Polizeli, M. L. T. M., A. C. S. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591. https://doi.org/10.1007/s00253-005-1904-7
- Prasertsan, P., A. H. Kittikul, A. Kunghae, J. Maneesri, and S. Oi. 1997. Optimization for xylanase and cellulase production from Aspergillus niger ATTC 6275 in palm oil mill wastes and its application. World J. Microbiol. Biotechnol. 13: 555-559. https://doi.org/10.1023/A:1018569426594
- Sato, Y., H. Fukuda, Y. Zhou, and S. Mikami. 2010. Contribution of ethanol-tolerant xylanase G2 from Aspergillus oryzae on Japanese sake brewing. J. Biosci. Bioeng. 110: 679-683. https://doi.org/10.1016/j.jbiosc.2010.07.015
- Wang, G., H. Luo, Y. Wang, H. Huang, P. Shi, P. Yang, et al. 2011. A novel cold-active xylanase gene from the environmental DNA of goat rumen contents: Direct cloning, expression and enzyme characterization. Bioresource Technol. 102: 3330-3336. https://doi.org/10.1016/j.biortech.2010.11.004
- Zhou, J. P., Y. J. Gao, Y. Y. Dong, X. H. Tang, J. J. Li, B. Xu, et al. 2012. A novel xylanase with tolerance to ethanol, salt, protease, SDS, heat, and alkali from actinomycete Lechevalieria sp. HJ3. J. Ind. Microbiol. Biot. 39: 965-975.
- Zhou, J. P., H. Q. Huang, K. Meng, P. J. Shi, Y. R. Wang, H. Y. Luo, et al. 2009. Molecular and biochemical characterization of a novel xylanase from the symbiotic Sphingobacterium sp. TN19. Appl. Microbiol. Biotechnol. 85: 323-333. https://doi.org/10.1007/s00253-009-2081-x
- Zhou, J. P., P. J. Shi, R. Zhang, H. Q. Huang, K. Meng, P. L. Yang, and B. Yao. 2011. Symbiotic Streptomyces sp. TN119 GH 11 xylanase: A new pH-stable, protease- and SDS-resistant xylanase. J. Ind. Microbiol. Biotechnol. 38: 523-530. https://doi.org/10.1007/s10295-010-0795-5
- Zhu, Y. P., X. T. Li, B. G. Sun, H. L. Song, E. Li, and H. X. Song. 2012. Properties of an alkaline-tolerant, thermostable xylanase from Streptomyces chartreusis L1105, suitable for xylooligosaccharide production. J. Food Sci. 77: C506-C511. https://doi.org/10.1111/j.1750-3841.2012.02671.x