DOI QR코드

DOI QR Code

Proteomic Analysis of the Oxidative Stress Response Induced by Low-Dose Hydrogen Peroxide in Bacillus anthracis

  • Received : 2012.09.27
  • Accepted : 2013.02.25
  • Published : 2013.06.28

Abstract

Anthrax is a bacterial disease caused by the aerobic spore-forming bacterium Bacillus anthracis, which is an important pathogen owing to its ability to be used as a terror agent. B. anthracis spores can escape phagocytosis and initiate the germination process even in antimicrobial conditions, such as oxidative stress. To analyze the oxidative stress response in B. anthracis and thereby learn how to prevent antimicrobial resistance, we performed protein expression profiling of B. anthracis strain HY1 treated with 0.3 mM hydrogen peroxide using a comparative proteomics-based approach. The results showed a total of 60 differentially expressed proteins; among them, 17 showed differences in expression over time. We observed time-dependent changes in the production of metabolic and repair/protection signaling proteins. These results will be useful for uncovering the metabolic pathways and protection mechanisms of the oxidative response in B. anthracis.

Keywords

References

  1. Antelmann, H., S. Engelmann, R. Schmid, and M. Hecker. 1996. General and oxidative stress responses in Bacillus subtilis: Cloning, expression, and mutation of the alkyl hydroperoxide reductase operon. J. Bacteriol. 178: 6571-6578. https://doi.org/10.1128/jb.178.22.6571-6578.1996
  2. Baillie, L., S. Hibbs, P. Tsai, G. L. Cao, and G. M. Rosen. 2005. Role of superoxide in the germination of Bacillus anthracis endospores. FEMS Microbiol. Lett. 245: 33-38. https://doi.org/10.1016/j.femsle.2005.02.016
  3. Bohren, K. M., B. Bullock, B. Wermuth, and K. H. Gabbay. 1989. The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases. J. Biol. Chem. 264: 9547-9551.
  4. Chen, L., Q. W. Xie, and C. Nathan. 1998. Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol. Cell. 1: 795-805. https://doi.org/10.1016/S1097-2765(00)80079-9
  5. Cybulski Jr., R. J., P. Sanz, F. Alem, S. Stibitz, R. L. Bull, and A. D. O'Brien. 2009. Four superoxide dismutases contribute to Bacillus anthracis virulence and provide spores with redundant protection from oxidative stress. Infect. Immun. 77: 274-285. https://doi.org/10.1128/IAI.00515-08
  6. Domigan, L. J., S. W. Scally, M. J. Fogg, C. A. Hutton, M. A. Perugini, R. C. Dobson, et al. 2009. Characterisation of dihydrodipicolinate synthase (DHDPS) from Bacillus anthracis. Biochim. Biophys. Acta 1794: 1510-1516. https://doi.org/10.1016/j.bbapap.2009.06.020
  7. Giulietti, A., L. Overbergh, D. Valckx, B. Decallonne, R. Bouillon, and C. Mathieu. 2001. An overview of real-time quantitative PCR: Applications to quantify cytokine gene expression. Methods 25: 386-401. https://doi.org/10.1006/meth.2001.1261
  8. Hare, N. J., N. E. Scott, E. H. Shin, A. M. Connolly, M. R. Larsen, G. Palmisano, and S. J. Cordwell. 2011. Proteomics of the oxidative stress response induced by hydrogen peroxide and paraquat reveals a novel AhpC-like protein in Pseudomonas aeruginosa. Proteomics 11: 3056-3069. https://doi.org/10.1002/pmic.201000807
  9. Jung, K. H., G. M. Seo, J. W. Yoon, K. S. Park, J. C. Kim, S. J. Kim, et al. 2008. Protein expression pattern of murine macrophages treated with anthrax lethal toxin. Biochim. Biophys. Acta 1784: 1501-1506. https://doi.org/10.1016/j.bbapap.2008.06.016
  10. Kim, S. K., S. Shahid, S. H. Kim, J. H. Park, H. T. Lee, K. H. Jung, and Y. G. Chai. 2012. Comparative analysis of virulence factors secreted by Bacillus anthracis Sterne at host body temperature. Lett. Appl. Microbiol. 54: 306-312. https://doi.org/10.1111/j.1472-765X.2012.03209.x
  11. Kiran, M. D., S. Bala, M. Hirshberg, and N. Balaban. 2010. YhgC protects Bacillus anthracis from oxidative stress. Int. J. Artif. Organs 33: 590-607. https://doi.org/10.1177/039139881003300905
  12. Liochev, S. I., A. Hausladen, W. F. Beyer Jr., and I. Fridovich. 1994. NADPH: Ferredoxin oxidoreductase acts as a paraquat diaphorase and is a member of the soxRS regulon. Proc. Natl. Acad. Sci. USA 91: 1328-1331. https://doi.org/10.1073/pnas.91.4.1328
  13. Maringanti, S. and J. A. Imlay. 1999. An intracellular iron chelator pleiotropically suppresses enzymatic and growth defects of superoxide dismutase-deficient Escherichia coli. J. Bacteriol. 181: 3792-3802.
  14. O'Toole, R., M. J. Smeulders, M. C. Blokpoel, E. J. Kay, K. Lougheed, and H. D. Williams. 2003. A two-component regulator of universal stress protein expression and adaptation to oxygen starvation in Mycobacterium smegmatis. J. Bacteriol. 185: 1543-1554. https://doi.org/10.1128/JB.185.5.1543-1554.2003
  15. Pohl, S., W. Y. Tu, P. D. Aldridge, C. Gillespie, H. Hahne, U. Mader, et al. 2011. Combined proteomic and transcriptomic analysis of the response of Bacillus anthracis to oxidative stress. Proteomics 11: 3036-3055. https://doi.org/10.1002/pmic.201100085
  16. Ralser, M., M. M. Wamelink, A. Kowald, B. Gerisch, G. Heeren, E. A. Struys, et al. 2007. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J. Biol. 6: 10. https://doi.org/10.1186/jbiol61
  17. Reboul, C. F., B. T. Porebski, M. D. Griffin, R. C. Dobson, M. A. Perugini, J. A. Gerrard, and A. M. Buckle. 2012. Structural and dynamic requirements for optimal activity of the essential bacterial enzyme dihydrodipicolinate synthase. PLoS Comput. Biol. 8: e1002537. https://doi.org/10.1371/journal.pcbi.1002537
  18. Riesenman, P. J. and W. L. Nicholson. 2000. Role of the spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation. Appl. Environ. Microbiol. 66: 620-626. https://doi.org/10.1128/AEM.66.2.620-626.2000
  19. Rogers, J. V., C. L. Sabourin, Y. W. Choi, W. R. Richter, D. C. Rudnicki, K. B. Riggs, et al. 2005. Decontamination assessment of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surfaces using a hydrogen peroxide gas generator. J. Appl. Microbiol. 99: 739-748. https://doi.org/10.1111/j.1365-2672.2005.02686.x
  20. Scandalios, J. G. 2002. Oxidative stress responses - what have genome-scale studies taught us? Genome Biol. 3: REVIEWS1019.
  21. Seo, G. M., K. H. Jung, S. J. Kim, J. C. Kim, J. W. Yoon, K. K. Oh, et al. 2008. Bacillus anthracis spores influence ATP synthase activity in murine macrophages. J. Microbiol. Biotechnol. 18: 778-783.
  22. Seo, G. M., S. J. Kim, J. C. Kim, D. H. Nam, M. Y. Yoon, B. S. Koo, and Y. G. Chai. 2004. Targeting of Bacillus anthracis interaction factors for human macrophages using two-dimensional gel electrophoresis. Biochem. Biophys. Res. Commun. 322: 854-859. https://doi.org/10.1016/j.bbrc.2004.07.190
  23. Shahid, S., J. H. Park, H. T. Lee, S. J. Kim, J. C. Kim, S. H. Kim, et al. 2010. Comparative proteome analysis of Bacillus anthracis with pXO1 plasmid content. J. Microbiol. 48: 771-777. https://doi.org/10.1007/s12275-010-0136-4
  24. Storz, G. and J. A. Imlay. 1999. Oxidative stress. Curr. Opin. Microbiol. 2: 188-194. https://doi.org/10.1016/S1369-5274(99)80033-2
  25. Topanurak, S., S. Sinchaikul, S. Phutrakul, B. Sookkheo, and S. T. Chen. 2005. Proteomics viewed on stress response of thermophilic bacterium Bacillus stearothermophilus TLS33. Proteomics 5: 3722-3730. https://doi.org/10.1002/pmic.200401254
  26. Tu, W. Y., S. Pohl, K. Gizynski, and C. R. Harwood. 2012. The iron-binding protein Dps2 confers peroxide stress resistance on Bacillus anthracis. J. Bacteriol. 194: 925-931. https://doi.org/10.1128/JB.06005-11
  27. Tu, W. Y., S. Pohl, P. Summpunn, S. Hering, S. Kerstan, and C. R. Harwood. 2012. Comparative analysis of the responses of related pathogenic and environmental bacteria to oxidative stress. Microbiology 158: 636-647. https://doi.org/10.1099/mic.0.057000-0
  28. Voss, J. E., S. W. Scally, N. L. Taylor, C. Dogovski, M. R. Alderton, C. A. Hutton, et al. 2009. Expression, purification, crystallization and preliminary X-ray diffraction analysis of dihydrodipicolinate synthase from Bacillus anthracis in the presence of pyruvate. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65: 188-191. https://doi.org/10.1107/S1744309109000670

Cited by

  1. Serum adenosine deaminase activity in cutaneous anthrax vol.20, pp.None, 2014, https://doi.org/10.12659/msm.890472
  2. 과산화수소 제독 과정에서의 탄저균 전사체 분석 vol.18, pp.4, 2013, https://doi.org/10.9766/kimst.2015.18.4.478
  3. Genome-wide transcriptional response of the Arctic bacterium Pseudoalteromonas sp. A2 to oxidative stress induced by hydrogen peroxide vol.35, pp.12, 2016, https://doi.org/10.1007/s13131-016-0892-z
  4. Diverse molecular resistance mechanisms of Bacillus megaterium during metal removal present in a spent catalyst vol.22, pp.3, 2013, https://doi.org/10.1007/s12257-016-0019-6
  5. Proteome Changes in Penicillium expansum Grown in a Medium Derived from Host Plant vol.27, pp.3, 2013, https://doi.org/10.4014/jmb.1605.05022
  6. Deletion of a putative NlpC/P60 endopeptidase BAS1812 affects germination, long-term survival and endospore formation in Bacillus anthracis vol.163, pp.2, 2017, https://doi.org/10.1099/mic.0.000416
  7. Serum paraoxonase activity and oxidative stress levels in patients with cutaneous anthrax vol.36, pp.7, 2017, https://doi.org/10.1177/0960327116661020
  8. Serum paraoxonase activity and oxidative stress levels in patients with cutaneous anthrax vol.36, pp.7, 2017, https://doi.org/10.1177/0960327116661020
  9. Influence of Zn(II) stress-induction on component variation and sorption performance of extracellular polymeric substances (EPS) from Bacillus vallismortis vol.41, pp.6, 2013, https://doi.org/10.1007/s00449-018-1911-6
  10. Comparative Analysis of the Global Transcriptomic Response to Oxidative Stress of Bacillus anthracis htrA -Disrupted and Parental Wild Type Strains vol.8, pp.12, 2013, https://doi.org/10.3390/microorganisms8121896