DOI QR코드

DOI QR Code

Seasonal and Spatial Diversity of Picocyanobacteria Community in the Great Mazurian Lakes Derived from DGGE Analyses of 16S rDNA and cpcBA-IGS Markers

  • Jasser, Iwona (Microbial Ecology Department, Institute of Botany, University of Warsaw) ;
  • Krolicka, Adriana (Microbial Ecology Department, Institute of Botany, University of Warsaw) ;
  • Jakubiec, Katarzyna (Microbial Ecology Department, Institute of Botany, University of Warsaw) ;
  • Chrost, Ryszard J. (Microbial Ecology Department, Institute of Botany, University of Warsaw)
  • Received : 2012.08.02
  • Accepted : 2013.01.28
  • Published : 2013.06.28

Abstract

The seasonal and spatial diversity of picocyanobacteria (Pcy) in lakes of the Great Mazurian Lakes (GLM) system was examined by DGGE analysis of molecular markers derived from the 16S-23S internal transcribed spacer (ITS) of the ribosomal operon and the phycocyanin operon (cpcBA-IGS). The study of nine lakes, ranging from mesotrophy to hypereutrophy, demonstrated seasonal variance of Pcy. The richness and Shannon diversity index calculated on the basis of both markers were higher in spring and lower in early and late summer. No statistically significant relationships were found between the markers and trophic status of the studied lakes or Pcy abundance. There were, however, statistically significant relationships between the diversity indices and sampling time. The analysis pointed to a different distribution of the two markers. The ITS marker exhibited more unique sequences in time and space, whereas a greater role for common and ubiquitous sequences was indicated by the cpcBA-IGS data. Examination of the Pcy community structure demonstrated that communities were grouped in highly similar clusters according to sampling season/time rather than to the trophic status of the lake. Our results suggest that time is more important than trophic status in shaping the diversity and structure of Pcy communities. The seasonal changes in picocyanobacteria and differences in diversity and community structures are discussed in the context of well-established ecological hypotheses: the PEG model, intermediate disturbance hypothesis (IDH), and horizontal gene transfer (HGT).

Keywords

References

  1. Arar, E. J. and G. B. Collins. 1997. Method 445.0. In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence. National Exposure Research Laboratory Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH.
  2. Becker, S., P. Boger, R. Oehlmann, and A. Ernst. 2000. PCR bias in ecological analysis: A case study for quantitative Taq nuclease assays in analyses of microbial communities. Appl. Environ. Microbiol. 66: 4945-4953. https://doi.org/10.1128/AEM.66.11.4945-4953.2000
  3. Becker, S., M. Fahrbach, P. Boger, and A. Ernst. 2002. Quantitative tracing, by Taq nuclease assays, of a Synechococcus ecotype in a highly diversified natural population. Appl. Environ. Microbiol. 68: 4486-4494. https://doi.org/10.1128/AEM.68.9.4486-4494.2002
  4. Becker, S., P. Sanchez-Baracaldo, A. K. Singh, and P. K. Hayes. 2012. Spatio-temporal niche partitioning of closely related picocyanobacteria clades and phycocyanin pigment types in Lake Constance (Germany). FEMS Microbiol. Ecol. 80: 488-500. https://doi.org/10.1111/j.1574-6941.2012.01316.x
  5. Becker, S., A. K. Singh, C. Postius, P. Boger, and A. Ernst. 2004. Genetic diversity and distribution of periphytic Synechococcus spp. in biofilms and picoplankton of Lake Constance. FEMS Microbiol. Ecol. 49: 181-190. https://doi.org/10.1016/j.femsec.2004.03.003
  6. Bell, T. and J. Kalff. 2001. The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnol. Oceanogr. 46: 1243-1248. https://doi.org/10.4319/lo.2001.46.5.1243
  7. Bostrom, K. H., K. Simu, A. Hangstrom, and L. Riemann. 2004. Optimization of DNA extraction for quantitative marine bacterioplankton community analysis. Limnol. Oceanogr. Methods 2: 365-373. https://doi.org/10.4319/lom.2004.2.365
  8. Callieri, C. 2008. Picophytoplankton in freshwater ecosystems: The importance of small-sized phototrophs. Freshw. Rev. 1: 1-28. https://doi.org/10.1608/FRJ-1.1.1
  9. Caravati, E., C. Callieri, B. Modenutti, G. Corno, E. Balseiro, R. Bertoni, and L. Michaud. 2010. Picocyanobacterial assemblages in ultraoligotrophic Andean lakes reveal high regional microdiversity. J. Plankton Res. 32: 357-366. https://doi.org/10.1093/plankt/fbp126
  10. Carlson, R. E. 1977. A trophic state index for lakes. Limnol. Oceanogr. 22: 361-369. https://doi.org/10.4319/lo.1977.22.2.0361
  11. Carrick, H. J. and C. L. Schelske. 1997. Have we overlooked the importance of small phytoplankton in productive waters? Limnol. Oceanogr. 42: 1613-1621. https://doi.org/10.4319/lo.1997.42.7.1613
  12. Choi, D. H., J. H. Noh, M. S. Hahm, and C. M. Lee. 2011. Picocyanobacterial abundances and diversity in surface water of the northwestern Pacific Ocean. Ocean Sci. J. 46: 265-271. https://doi.org/10.1007/s12601-011-0020-0
  13. Chróst, R. J. and W. Siuda. 2006. Microbial production, utilization, and enzymatic degradation of organic matter in the upper trophogenic water layer in the pelagial zone of lakes along the eutrophication gradient. Limnol. Oceanogr. 51: 749-762. https://doi.org/10.4319/lo.2006.51.1_part_2.0749
  14. Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302-1309. https://doi.org/10.1126/science.199.4335.1302
  15. Crosbie, N. D., M. Pöckl, and T. Weisse. 2003. Rapid establishment of clonal isolates of freshwater autotrophic picoplankton by single-cell and single-colony sorting. J. Microbiol. Methods 55: 361-370. https://doi.org/10.1016/S0167-7012(03)00167-2
  16. Crosbie, N. D., M. Pöckl, and T. Weisse. 2003. Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16S rRNA gene and cpcBA intergenic spacer sequence analyses. Appl. Environ. Microbiol. 69: 5716-5721. https://doi.org/10.1128/AEM.69.9.5716-5721.2003
  17. Ernst, A., S. Becker, U. I. A. Wollenzien, and C. Postius. 2003. Ecosystem dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. Microbiology 149: 217-228. https://doi.org/10.1099/mic.0.25475-0
  18. Ernst, A., P. Marschall, and C. Postius. 1995. Genetic diversity among Synechococcus spp. (cyanobacteria) isolated from the pelagial of Lake Constance. FEMS Microbiol. Ecol. 17: 197-204. https://doi.org/10.1111/j.1574-6941.1995.tb00143.x
  19. Haverkamp, T., S. G. Acinas, M. Doeleman, M. Stomp, J. Huisman, and L. J. Stal. 2008. Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ. Microbiol. 10: 174-188.
  20. Jasser, I. 2002. Autotrophic picoplankton (APP) in four lakes of different trophic status: Composition, dynamics and relation to phytoplankton. Pol. J. Ecol. 50: 341-355.
  21. Jasser, I. and L. Arvola. 2003. Potential effects of abiotic factors on the abundance of autotrophic picoplankton in four boreal lakes. J. Plankton Res. 25: 873-883. https://doi.org/10.1093/plankt/25.8.873
  22. Jasser, I., A. Karnkowska-Ishikawa, E. Koz owska, A. Królicka, and M. ukomska-Kowalczyk. 2010. Isolation of picocyanobacteria from Great Mazurian Lake System - comparison of two methods. Pol. J. Microbiol. 59: 21-31.
  23. Jasser, I., A. Krolicka, and A. Karnkowska-Ishikawa. 2011. A novel phylogenetic clade of picocyanobacteria from the Mazurian lakes (Poland) reflects the early ontogeny of glacial lakes. FEMS Microbiol. Ecol. 75: 89-98. https://doi.org/10.1111/j.1574-6941.2010.00990.x
  24. Johnson, P. W. and J. M. Sieburth. 1979. Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass. Limnol. Oceanogr. 24: 928-935. https://doi.org/10.4319/lo.1979.24.5.0928
  25. Kan, J., K. Wang, and F. Chen. 2006. Temporal variation and detection limit of an estuarine bacterioplankton community analyzed by denaturing gradient gel electrophoresis (DGGE). Aquat. Microb. Ecol. 42: 7-18. https://doi.org/10.3354/ame042007
  26. Katano, T. and M. Fukui. 2003. Molecular inference of dominant picocyanobacterial populations by denaturing gradient gel electrophoresis of PCR amplified 16S rRNA gene fragments. Phycol. Res. 51: 71-76. https://doi.org/10.1111/j.1440-1835.2003.tb00173.x
  27. Li, W., Y. Yuhe, Z. Tanglin, F. Weisong, Z. Xiang, and L. Wei. 2009. PCR-DGGE fingerprinting analysis of plankton communities and its relationship to lake trophic status. Int. Rev. Hydrobiol. 94: 528-541. https://doi.org/10.1002/iroh.200911129
  28. Moser, M., C. Callieri, and T. Weisse. 2009. Photosynthetic and growth response of freshwater picocyanobacteria are strainspecific and sensitive to photoacclimation. J. Plankton Res. 31: 349-357. https://doi.org/10.1093/plankt/fbn123
  29. Padisák, J. 1993. The influence of different disturbance frequencies on the species richness, diversity and equitability of phytoplankton in shallow lakes. Hydrobiologia 249: 135-156. https://doi.org/10.1007/BF00008850
  30. Reynolds, C. S., J. Padisák, and U. Sommer. 1993. Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: A synthesis. Hydrobiologia 249: 183-188. https://doi.org/10.1007/BF00008853
  31. Robertson, B. R., N. Tezuka, and M. M. Watanabe. 2001. Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of the 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int. J. Syst. Evol. Microbiol. 51: 861-871. https://doi.org/10.1099/00207713-51-3-861
  32. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  33. Sanchez-Baracaldo, P., B. A. Handley, and P. K. Hayes. 2008. Picocyanobacterial community structure of freshwater lakes and the Baltic Sea revealed by phylogenetic analyses and cladespecific quantitative PCR. Microbiology 154: 3347-3357. https://doi.org/10.1099/mic.0.2008/019836-0
  34. Shannon, C. E. 1948. A mathematical theory of communication. Bell System Tech. J. 27: 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  35. Six, C., J. C. Thomas, L. Garczarek, M. Ostrowski, A. Dufresne, N. Blot, et al. 2007. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: A comparative genomics study. Genome Biol. 8: R259. https://doi.org/10.1186/gb-2007-8-12-r259
  36. Smalla, K., G. Wieland, A. Buchner, A. Zock, J. Parzy, S. Kaiser, et al. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: Plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67: 4742-4751. https://doi.org/10.1128/AEM.67.10.4742-4751.2001
  37. Sommer, U. 1993. Disturbance-diversity relationships in two lakes of similar nutrient chemistry but contrasting disturbance regimes. Hydrobiologia 249: 59-65. https://doi.org/10.1007/BF00008843
  38. Sommer, U., Z. M. Gliwicz, W. Lampert, and A. Duncan. 1986. The PEG-model of seasonal succession of planktonic events in lakes. Arch. Hydrobiol. 106: 433-471.
  39. Stockner, J. G. and N. J. Antia. 1986. Algal picoplankton from marine and freshwater ecosystems: A multidisciplinary perspective. Can. J. Fish. Aquat. Sci. 43: 2472-2503. https://doi.org/10.1139/f86-307
  40. Stomp, M., J. Huisman, L. Voros, F. R. Pick, M. Laamanen, T. Haverkamp, and L. J. Stal. 2007. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecol. Lett. 10: 290-298. https://doi.org/10.1111/j.1461-0248.2007.01026.x
  41. Voros, L., C. Callieri, K. V.-Balogh, and R. Bertoni. 1998. Freshwater picocyanobacteria along a trophic gradient and light quality. Hydrobiologia 369/370: 117-125. https://doi.org/10.1023/A:1017026700003
  42. Wacnik, A. 2009. From foraging to farming in the Great Mazurian Lake District: Palynological studies on Lake Mi kowskie sediments, northeast Poland. Veg. Hist. Archaeobot. 18: 187-203. https://doi.org/10.1007/s00334-008-0196-0
  43. Weisse, T. 1993. Dynamics of autotrophic picoplankton in marine and freshwater ecosystems, pp. 327-370. In J. G. Jones (ed.). Advances in Microbial Ecology. Plenum Press, New York.
  44. Yu, Y., Q. Yan, and W. Feng. 2008. Spatiotemporal heterogeneity of plankton communities in Lake Donghu, China, as revealed by PCR-denaturing gradient gel electrophoresis and its relation to biotic and abiotic factors. FEMS Microbiol. Ecol. 63: 328-337. https://doi.org/10.1111/j.1574-6941.2007.00430.x
  45. Zhao, B., M. Chen, Y. Sun, J. Yang, and F. Chen. 2011. Genetic diversity of picoeukaryotes in eight lakes differing in trophic status. Can. J. Microbiol. 57: 115-126. https://doi.org/10.1139/W10-107

Cited by

  1. Effects of Habitat Partitioning on the Distribution of Bacterioplankton in Deep Lakes vol.10, pp.None, 2013, https://doi.org/10.3389/fmicb.2019.02257
  2. Morphological and Molecular Diversity of Benthic Cyanobacteria Communities Versus Environmental Conditions in Shallow, High Mountain Water Bodies in Eastern Pamir Mountains (Tajikistan) vol.67, pp.4, 2013, https://doi.org/10.3161/15052249pje2019.67.4.002