DOI QR코드

DOI QR Code

An ${\beta}$-1,4-Xylanase with Exo-Enzyme Activity Produced by Paenibacillus xylanilyticus KJ-03 and Its Cloning and Characterization

  • Park, Dong-Ju (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Lee, Yong-Suk (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Chang, Jie (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Fang, Shu-Jun (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Choi, Yong-Lark (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University)
  • 투고 : 2012.12.06
  • 심사 : 2012.12.28
  • 발행 : 2013.03.28

초록

Paenibacillus xylanilyticus KJ-03 was isolated from soil samples obtained from a field with Amorphophallus konjac plants. A gene encoding xylanase was isolated from KJ-03 and cloned using a fosmid library. The xynA gene encodes xylanase; it consists of 1,035 bp and encodes 345 amino acids. The amino acid sequence deduced from the P. xylanilyticus KJ-03 xylanase showed 81% and 69% identities with those deduced from the P. polymyxa E681 and Paenibacillus sp. HPL-001 xylanases, respectively. The xynA gene comprises a single domain, consisting of a catalytic domain of the glycosyl hydrolase (GH) 10 family. The xynA gene was expressed in Escherichia coli BL21 (trxB), and the recombinant xylanase was purified by Niaffinity chromatography. The purified xylanase showed optimum activity with birchwood xylan as a substrate at $40^{\circ}C$ and pH 7.4. Treatment with $Mg^{2+}$ and $Li^+$ showed a slight decrease in XynA activity; however, treatment with 5 mM $Cu^{2+}$ completely inhibited its activity. The results of the thin layer chromatography analysis indicated that the major hydrolysis product was xylobiose and small amounts of xylose and xylotriose. XynA showed increased activity with oat spelt xylan and birchwood xylan, but showed only slight activity with locust bean gum.

키워드

참고문헌

  1. Ali, M. K., F. B. Rudolph, and G. N. Bennett. 2005. Characterization of thermostable Xyn10A enzyme from mesophilic Clostridium acetobutylicum ATCC 824. J. Ind. Microbiol. Biotechnol. 32: 12-18. https://doi.org/10.1007/s10295-004-0192-z
  2. Amaya-Delgado, L., T. Mejia-Castillo, A. Santiago-Hernandez, J. Vega-Estrada, F. G. S. Amelia, B. Xoconostle-Cazares, et al. 2010. Cloning and expression of a novel, moderately thermostable xylanase-encoding gene (Cfl xyn11A) from Cellulomonas flavigena. Bioresour. Technol. 101: 5539-5545. https://doi.org/10.1016/j.biortech.2010.02.057
  3. Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal. 2001. Microbial xylanase and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338. https://doi.org/10.1007/s002530100704
  4. Biely, P., D. Mislovicova, and R. Toman, 1988. Remazol brilliant blue-xylan: A soluble chromogenic substrate for xylanases. Methods Enzymol. 160: 536-542. https://doi.org/10.1016/0076-6879(88)60165-0
  5. Cho, K. M., S. J. Hong, R. K. Math, S. M. A. Islam, J. O. Kim, Y. H. Lee, et al. 2008. Cloning of two cellulase genes from endophytic Paenibacillus polymyxa GS01 and comparison with cel44C-man26A. J. Basic Microbiol. 48: 464-472. https://doi.org/10.1002/jobm.200700281
  6. Chow, V., G. Nong, and J. F. Preston. 2007. Structure, function, and regulation of the aldouronate utilization gene cluster from Paenibacillus sp. strain JDR-2. J. Bacteriol. 189: 8863-8870. https://doi.org/10.1128/JB.01141-07
  7. Gallardo, O., P. Diaz, and F. I. J. Pastor. 2003. Characterization of a Paenibacillus cell-associated xylanase with high activity on aryl-xylosides: A new subclass of family 10 xylanases. Appl. Microbiol. Biotechnol. 61: 226-233. https://doi.org/10.1007/s00253-003-1239-1
  8. Heo, S., J. Kwak, H. W. Oh, D. S. Park, K. S. Bae, D. H. Shin, and H. Y. Park. 2006. Characterization of an extracellular xylanase in Paenibacillus sp. HY-8 isolated from an herbivorous longicorn beetle. J. Microbiol. Biotechnol. 16: 1753-1759.
  9. Hwang, I. T., H. K. Lim, H. Y. Song, S. J. Cho, J. S. Chang, and N. J. Park. 2010. Cloning and characterization of a xylanase, KRICT PX1 from the strain Paenibacillus sp. HPL-001. Biotechnol. Adv. 28: 594-601. https://doi.org/10.1016/j.biotechadv.2010.05.007
  10. Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309-316.
  11. Hu, Y., G. Zhang, A. Li, J. Chen, and L. Ma. 2008. Cloning and enzymatic characterization of a xylanase gene from a soilderived metagenomic library with an efficient approach. Appl. Microbiol. Biotechnol. 80: 823-830. https://doi.org/10.1007/s00253-008-1636-6
  12. Ito, Y., T. Tomita, N. Roy, A. Nakano, N. Sugawara-Tomita, S. Watanabe, et al. 2003. Cloning, expression, and cell surface localization of Paenibacillus sp. strain W-61 xylanase 5, a multidomain xylanase. Appl. Environ. Microbiol. 69: 6969-6978. https://doi.org/10.1128/AEM.69.12.6969-6978.2003
  13. Kim, D. Y., M. K. Han, H. W. Oh, K. S. Bae, T. S. Jeong, S. U. Kim, et al. 2010. Novel intracellular GH10 xylanase from Cohnella laeviribosi HY-21: Biocatalytic properties and alterations of substrate specificities by site-directed mutagenesis of Trp residues. Bioresour. Technol. 22: 8814-8821.
  14. Kim, D. Y., M. K. Han, D. S. Park, J. S. Lee, H. W. Oh, D. H. Shin, et al. 2009. Novel GH10 xylanase, with a fibronectin type 3 domain, from Cellulosimicrobium sp. strain HY-13, a bacterium in the gut of Eisenia fetida. Appl. Environ. Microbiol. 75: 7275-7279. https://doi.org/10.1128/AEM.01075-09
  15. Kim, H., K. H. Jung, and M. Y. Pack. 2000. Molecular characterization of xynX, a gene encoding a multidomain xylanase with a thermostabilizing domain from Clostridium thermocellum. Appl. Microbiol. Biotechnol. 54: 521-527. https://doi.org/10.1007/s002530000412
  16. Lee, C. C., R. E. Kibblewhite-accinelli, M. R. Smith, K. Wagschal, W. J. Orts, and D. W. S. Wong. 2008. Cloning of Bacillus licheniformis xylanase gene and characterization of recombinant enzyme. Curr. Microbiol. 57: 301-305. https://doi.org/10.1007/s00284-008-9193-x
  17. Lee, T. H., O. L. Pyung, and Y. E. Lee. 2007. Cloning, characterization, and expression of xylanase A gene from Paenibacillus sp. DG-22 in Escherichia coli. J. Microbiol. Biotechnol. 17: 29-36.
  18. Lee, Y. E. and P. O. Lim. 2004. Purification and characterization of two thermostable xylanases from Paenibacillus sp. DG-22. J. Microbiol. Biotechnol. 14: 1014-1021.
  19. Li, N., P. Yang, Y. Wang, H. Luo, K. Meng, N. Wu, et al. 2008. Cloning, expression, and characterization of protease-resistant xylanase from Streptomyces fradiae var. k11. J. Microbiol. Biotechnol. 18: 410-416.
  20. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  21. Park, I. H., J. Chang, Y. S. Lee, S. J. Fang, and Y. L. Choi. 2012. Gene cloning of endoglucanase Cel5A from cellulosedegrading Paenibacillus xylanilyticus KJ-03 and purification and characterization of the recombinant enzyme. Protein J. 31: 238-245. https://doi.org/10.1007/s10930-012-9396-7
  22. Raha, A. R., L. Y. Chang, A. Sipat, K. Yusoff, and T. Haryanti. 2006. Expression of a thermostable xylanase gene from Bacillus coagulans ST-6 in Lactococcus lactis. Lett. Appl. Microbiol. 42: 210-214. https://doi.org/10.1111/j.1472-765X.2006.01856.x
  23. Ratanakhanokchai, K., K. L. Kyu, and M. Tanticharoen. 1999. Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl. Environ. Microbiol. 65: 694-697.
  24. Rattiya, W., P. Pason, K. L. Kyu, K. Sakka, A. Kosugi, Y. Mori, and K. Ratanakhanokchai. 2009. Cloning, sequencing, and expression of the gene encoding a multidomain endo-$\beta$-1,4-xylanase from Paenibacillus curdlanolyticus B-6, and characterization of the recombinant enzyme. J. Microbiol. Biotechnol. 19: 277-285.
  25. Sambrook, J. and D. W. Russel. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA
  26. Valenzuela, S. V., P. Daiz, and F. I. J. Pastor. 2010. Recombinant expression of an alkali stable GH 10 xylanase from Paenibacillus barcinonensis. J. Agric. Food Chem. 58: 4814-4818. https://doi.org/10.1021/jf9045792
  27. Watanabe, S., D. N. Viet, J. Kaneko, Y. Kamio, and S. Yoshida. 2008. Cloning, expression and transglycosylation reaction of Paenibacillus sp. strain W-61 xylanase1. Biosci. Biotechnol. Biochem. 72: 951-958. https://doi.org/10.1271/bbb.70622
  28. Wu, S., B. Liu, and X. Zhang. 2006. Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl. Microbiol. Biotechnol. 72: 1210-1216. https://doi.org/10.1007/s00253-006-0416-4
  29. Yoon, K. H. 2009. Cloning of the Bacillus subtilis AMX-4 xylanase gene and characterization of the gene product. J. Microbiol. Biotechnol. 19: 1514-1519. https://doi.org/10.4014/jmb.0907.07004
  30. Zhang, M., Z. Jiang, S. Yang, C. Hau, and L. Li. 2010. Cloning and expression of a Paecilomyces thermophila xylanase gene in E. coli and characterization of the recombinant xylanase. Bioresour. Technol. 101: 688-695. https://doi.org/10.1016/j.biortech.2009.08.055

피인용 문헌

  1. Microbial Exo-xylanases: A Mini Review vol.174, pp.1, 2013, https://doi.org/10.1007/s12010-014-1042-8
  2. Expression of Aeromonas punctata ME-1 exo-Xylanase X in E. coli for Efficient Hydrolysis of Xylan to Xylose vol.174, pp.8, 2013, https://doi.org/10.1007/s12010-014-1216-4
  3. Bacterial xylanases: biology to biotechnology vol.6, pp.2, 2013, https://doi.org/10.1007/s13205-016-0457-z
  4. Characterization of a new bifunctional endo-1,4-β-xylanase/esterase found in the rumen metagenome vol.11, pp.1, 2013, https://doi.org/10.1038/s41598-021-89916-8