DOI QR코드

DOI QR Code

Improved Methodology for Identification of Cryptomonads: Combining Light Microscopy and PCR Amplification

  • Xia, Shuang (Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences) ;
  • Cheng, Yingyin (Center for Water Environment and Human Health, Institute of Hydrobiology, Chinese Academy of Sciences) ;
  • Zhu, Huan (Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences) ;
  • Liu, Guoxiang (Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences) ;
  • Hu, Zhengyu (Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences)
  • Received : 2012.03.26
  • Accepted : 2012.10.16
  • Published : 2013.03.28

Abstract

Cryptomonads are unicellular, biflagellate algae. Generally, cryptomonad cells cannot be preserved well because of their fragile nature, and an improved methodology should be developed to identify cryptomonads from natural habitats. In this study, we tried using several cytological fixatives, including glutaraldehyde, formaldehyde, and their combinations to preserve field samples collected from various waters, and the currently used fixative, Lugol's solution was tested for comparison. Results showed that among the fixatives tested, glutaraldehyde preserved the samples best, and the optimal concentration of glutaraldehyde was 2%. The cell morphology was well preserved by glutaraldehyde. Cells kept their original color, volume, and shape, and important taxonomic features such as furrow/gullet complex, ejectosomes, as well as flagella could be observed clearly, whereas these organelles frequently disappeared in Lugol's solution preserved samples. The osmotic adjustments and buffers tested could not preserve cell density significantly higher. Statistical calculation showed the cell density in the samples preserved by 2% glutaraldehyde remained stable after 43 days of the fixation procedure. In addition, DNA was extracted from glutaraldehyde preserved samples by grinding with liquid nitrogen and the 18S rDNA sequence was amplified by PCR. The sequence was virtually identical to the reference sequence, and phylogenetic analyses showed very close relationship between it and sequences from the same organism. To sum up, the present study demonstrated that 2% unbuffered glutaraldehyde, without osmotic adjustments, can preserve cryptomonads cells for identification, in terms of both light microscopy and phylogenetic analyses based on DNA sequences.

Keywords

References

  1. Andreoli, C., C. Tolomio, N. Rascio, and R. Talarico. 1986. Some observations on a Cryptophyceae responsible for a winter red bloom. G. Bot. Ital. 120: 70-71.
  2. Andersen, R. A. 1992. Diversity of eukaryotic algae. Biodivers. Conserv. 1: 267-292. https://doi.org/10.1007/BF00693765
  3. Auinger, B. M., K. Pfandl, and J. Boenigk. 2008. Improved methodology for identification of protists and microalgae from plankton samples preserved in Lugol's iodine solution: Combining microscopic analysis with single-cell PCR. Appl. Environ. Microbiol. 74: 2505-2510. https://doi.org/10.1128/AEM.01803-07
  4. Barone, R. and L. Naselli-Flores. 2003. Distribution and seasonal dynamics of cryptomonads in Sicilian water bodies. Hydrobiologia 502: 325-329. https://doi.org/10.1023/B:HYDR.0000004290.22289.c2
  5. Brett, S. J., L. Perasso, and R. Wetherbee. 1994. Structure and development of the cryptomonad periplast: A review. Protoplasma 181: 106-122. https://doi.org/10.1007/BF01666391
  6. Cavalier-Smith, T., J. A. Couch, K. E. Thorsteinsen, P. Gilson, J. A. Deane, D. R. A. Hill, and G. I. McFadden. 1996. Cryptomonad nuclear and nucleomorph 18S rRNA phylogeny. Eur. J. Phycol. 31: 315-328. https://doi.org/10.1080/09670269600651541
  7. Clay, B. L., P. Kugrens, and R. E. Lee. 1999. A revised classification of Cryptophyta. Bot. J. Lin. Soc. 131: 131-151. https://doi.org/10.1111/j.1095-8339.1999.tb01845.x
  8. Corrado, O. J., J. Osman, and R. J. Davies. 1986. Asthma and rhinitis after exposure to glutaraldehyde. Hum. Toxicol. 5: 325-328. https://doi.org/10.1177/096032718600500505
  9. Dame, R., M. Alber, D. Allen, M. Mallin, C. Montague, A. Lewitus, et al. 2000. Estuaries of the South Atlantic coast of North America: Their geographical signatures. Estuar. Coast. 23: 793-819. https://doi.org/10.2307/1352999
  10. De Giorgi, C., M. F. Sialer, and F. Lamberti. 1994. Formalininduced infidelity in PCR-amplified DNA fragments. Mol. Cell. Probes 8: 459-462. https://doi.org/10.1006/mcpr.1994.1065
  11. Deane, J. A., I. M. Strachan, G. M. Saunders, D. R. A. Hill, and G. I. McFadden. 2002. Cryptomonad evolution: Nuclear 18S rDNA phylogeny versus cell morphology and pigmentation. J. Phycol. 38: 1236-1244. https://doi.org/10.1046/j.1529-8817.2002.01250.x
  12. Doughty, M. J., J. P. Bergmanson, and Y. Blocker. 1995. Impact of glutaraldehyde versus glutaraldehyde-formaldehyde fixative on cell organization in fish corneal epithelium. Tissue Cell 27: 701-712. https://doi.org/10.1016/S0040-8166(05)80025-4
  13. Douglas, M. P. and S. O. Rogers. 1998. DNA damage caused by common cytological fixatives. Mutat. Res. 401: 77-88. https://doi.org/10.1016/S0027-5107(97)00314-X
  14. Doyle, J. J. and E. E. Dickson. 1987. Preservation of plant samples for DNA restriction endonuclease analysis. Taxon 36: 715-722. https://doi.org/10.2307/1221122
  15. Gillot, M. 1990. Phylum Cryptophyta (Cryptomonads), pp. 139-151. In L. Margulis, J. O. Corliss, M. Melkonian, and D. J. Chapman (eds.). Handbook of Protoctista. Jones Bartlett Publishers, Boston.
  16. Godhe, A., D. M. Anderson, and A. Rehnstam-Holm. 2002. PCR amplification of microalgal DNA for sequencing and species identification: Studies on fixatives and algal growth stages. Harmful Algae 1: 375-382. https://doi.org/10.1016/S1568-9883(02)00049-5
  17. Hansen, K. S. 1983. Glutaraldehyde occupational dermatitis. Contact Derm. 9: 81-82. https://doi.org/10.1111/j.1600-0536.1983.tb04639.x
  18. Hill, D. R. A. 1991. A revised circumscription of Cryptomonas (Cryptophyceae) based on examination of Australian strains. Phycologia 30: 170-188. https://doi.org/10.2216/i0031-8884-30-2-170.1
  19. Hoef-Emden, K. 2007. Revision of the genus Cryptomonas (Cryptophyceae) II: Incongruences between the classical morphospecies concept and molecular phylogeny in smaller pyrenoid-less cells. Phycologia 46: 402-428. https://doi.org/10.2216/06-83.1
  20. Hoef-Emden, K., B. Marin, and M. Melkonian. 2002. Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity. J. Mol. Evol. 55: 161-179. https://doi.org/10.1007/s00239-002-2313-5
  21. Hoef-Emden, K. and M. Melkonian. 2003. Revision of the genus Cryptomonas (Cryptophyceae) I: A combination of molecular phylogeny and morphology provides insights into a long hidden dimorphism. Protist 154: 371-409. https://doi.org/10.1078/143446103322454130
  22. Hotzel, G. and R. Croome. 1999. A Phytoplankton Methods Manual for Australian Freshwaters. Land and Water Resources Research and Development Corporation, Green Words & Images, Canberra.
  23. Jordan, W. P., M. V. Dahl, and H. L. Albert. 1972. Contact dermatitis from glutaraldehyde. Arch. Dermatol. 105: 94-95. https://doi.org/10.1001/archderm.1972.01620040062015
  24. Katano, T., M. Yoshida, J. Lee, M. S. Han, and Y. Hayami. 2009. Fixation of Chattonella autiqua and C. marina (Raphidophyceae) using Hepes-buffered paraformaldehyde and glutaraldehyde for flow cytometry and light microscopy. Phycologia 48: 473-479. https://doi.org/10.2216/08-102.1
  25. Klaveness, D. 1988. Ecology of the Cryptomonadida: A first review. pp. 105-133. In C. D. Sandgren (ed.). Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, New York.
  26. Klaveness, D. 1988. Biology and ecology of the Cryptophyceae: Status and challenges. Biol. Oceanogr. 6: 257-270.
  27. Kugrens, P. and B. L. Clay. 2003. Cryptomonads, pp. 715-755. In J. D. Wehr and R. G. Sheath (eds.). Freshwater Algae of North America. Academic Press, San Diego.
  28. Leakey, R. J. G., P. K. Burkhill, and M. A. Sleigh. 1994. A comparion of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations. J. Plankton Res. 16: 375-389. https://doi.org/10.1093/plankt/16.4.375
  29. Marín, I., A. Aguilera, B. Reguera, and J. P. Abad. 2001. Preparation of DNA suitable for PCR amplification from fresh or fixed single dinoflagellate cells. Biotechniques 30: 88-90.
  30. McFadden, G. I. and M. Melkonian. 1986. Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 25: 551-557. https://doi.org/10.2216/i0031-8884-25-4-551.1
  31. Menden-Deuer, S., E. J. Lessard, and J. Satterberg. 2001. Effect of preservation on dinoflagellate and diatom cell volume and consequences for carbon biomall predictions. Mar. Ecol. Prog. Ser. 222: 41-50. https://doi.org/10.3354/meps222041
  32. Menezes, M. and G. Novarino. 2003. How diverse are planktonic cryptomonads in Brazil? Advantages and difficulties of a taxonomic-biogeographical approach. Hydrobiologia 502: 297-306. https://doi.org/10.1023/B:HYDR.0000004287.36848.65
  33. Monsan, P., G. Puzo, and H. Marzarguil. 1975. Etude du mecanisme d'etablissement des liaisons glutaraldehyde-proteines. Biochimie 57: 1281-1292.
  34. Nishijima, T. 1990. Growth characteristics of Plagioselmis sp. (strain 87) causing freshwater red tide in the lower part of the Nakasuji River, Japan. Nippon Suisan Gakkaishi. 56: 353-359. https://doi.org/10.2331/suisan.56.353
  35. Novarino, G. A. 2003. Companion to the identification of cryptomonad flagellates (Cryptophyceae, cryptomonadea). Hydrobiologia 502: 225-270. https://doi.org/10.1023/B:HYDR.0000004284.12535.25
  36. Paljarvi, L., J. H. Garcia, and H. Kalimo. 1979. The efficiency of aldehyde fixation for electron microscopy: Stabilization of rat brain tissue to withstand osmotic stress. Histochem. J. 11: 267-276. https://doi.org/10.1007/BF01005026
  37. Reynolds, C. S. 1978. Notes on the phytoplankton periodicity of Rostherne Mere, Cheshire, 1967-1977. Br. Phycol. J. 13: 329-335. https://doi.org/10.1080/00071617800650391
  38. Richlen, M. and P. Barber 2005. A technique for the rapid extraction of microalgal DNA from single live and preserved cells. Mol. Ecol. Notes 5: 688-691. https://doi.org/10.1111/j.1471-8286.2005.01032.x
  39. Santore, U. J. 1984. Some aspects of taxonomy in the Cryptophyceae. New Phycol. 98: 627-646.
  40. Shiozawa, D., J. Kudo, R. P. Evans, S. R. Woodward, and R. N. Williams. 1992. DNA extraction from preserved trout tissues. West. N. Am. Naturalist 52: 29-34.
  41. Stoecker, D. K., D. J. Gifford, and M. Putt. 1994. Preservation of marine planktonic ciliates: Losses and cell shrinkage during fixation. Mar. Ecol. Prog. Ser. 110: 293-299. https://doi.org/10.3354/meps110293
  42. Tamura, K., J. Dudley, M. Nei, and S. Kumar. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. https://doi.org/10.1093/molbev/msm092
  43. Thompson, J. D., T. J. Gibson, F. Plewniak, and D. G. Higgins. 1997. The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  44. Throndsen J. 1978. Preservation and storage, pp. 69-74. In A. Sournia (ed.). Phytoplankton Manual. United Nations Educational, Scientific and Cultural Organization, Paris.
  45. Voo, K. S. and M. Britta. 1998. Extraction and amplifi-cation of mitochondrial DNA from formalin-fixed deep-sea mollusks. Biotechniques 24: 243-247.
  46. Wiggins, P., S. A. McCurdy, and W. Zeidenberg. 1989. Epistaxis due to glutaraldehyde exposure. J. Occup. Med. 31: 854-856. https://doi.org/10.1097/00043764-198910000-00013
  47. Williams, C., F. Ponten, C. Moberg, P. Soderkvist, M. Uhlen, J. Ponten, et al. 1999. A high frequency of sequence alterations is due to formalin fixation of archival specimens. Am. J. Pathol. 155: 1467-1471. https://doi.org/10.1016/S0002-9440(10)65461-2
  48. Woelfl, S. and B. A. Whitton. 2000. Sampling, preservation and quantification of biological samples from highly acidic environments ($pH{\leq}3$). Hydrobiologia 433: 173-180. https://doi.org/10.1023/A:1004099527441

Cited by

  1. Consistency of Targeted Metatranscriptomics and Morphological Characterization of Phytoplankton Communities vol.11, pp.None, 2013, https://doi.org/10.3389/fmicb.2020.00096
  2. Comparative analysis of freshwater phytoplankton communities in two lakes of Burabay National Park using morphological and molecular approaches vol.11, pp.1, 2013, https://doi.org/10.1038/s41598-021-95223-z