References
- Asada, Y. and J. Miyake. 1999. Photobiological hydrogen production. J. Biosci. Bioeng. 88: 1-6. https://doi.org/10.1016/S1389-1723(99)80166-2
- Cho, D. H., S. J. Shin, Y. Bae, C. Park, and Y. H. Kim. 2011. Ethanol production from acid hydrolysates based on the construction and demolition wood waste using Pichia stipitis. Bioresour. Technol. 102: 4439-4443. https://doi.org/10.1016/j.biortech.2010.12.094
- Chun, J., J. H. Lee, Y. Jung, M. Kim, S. Kim, B. K. Kim, and Y. W. Lim. 2007. EzTaxon: A web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
- Das, D. and T. N. Veziroglu. 2001. Hydrogen production by biological processes: A survey of literature. Int. J. Hydrogen Energy 26: 13-28. https://doi.org/10.1016/S0360-3199(00)00058-6
- Han, S. K. and H. S. Shin. 2004. Performance of an innovative two-stage process converting food waste to hydrogen and methane. J. Air Waste Manage. 54: 242-249. https://doi.org/10.1080/10473289.2004.10470895
- Hawkes, F. R., R. Dinsdale, D. L. Hawkes, and I. Hussy. 2002. Sustainable fermentative hydrogen production: Challenges for process optimisation. Int. J. Hydrogen Energy 27: 1339-1347. https://doi.org/10.1016/S0360-3199(02)00090-3
- Holmes, B. and N. Jones. 2003. Brace yourself for the end of cheap oil. New Sci. 179: 9.
- Jayasinghearachchi, H. S., P. M. Sarma, S. Singh, A. Aginihotri, A. K. Mandal, and B. Lal. 2009. Fermentative hydrogen production by two novel strains of Enterobacter aerogenes HGN-2 and HT 34 isolated from sea buried crude oil pipelines Int. J. Hydrogen Energy 34: 7197-7207. https://doi.org/10.1016/j.ijhydene.2009.06.079
- Kalia, V. C., S. R. Jain, A. Kumar, and A. P. Joshi. 1994. Fermentation of bio-waste to H2 by Bacillus licheniformis. World J. Microbiol. Biotechnol. 10: 224-227. https://doi.org/10.1007/BF00360893
- Karube, I., T. Matsunaga, S. Tsuru, and S. Suzuki. 1976. Continuous hydrogen production by immobilized whole cells of Clostridium butyricum. Biochim. Biophys. Acta 444: 338-343. https://doi.org/10.1016/0304-4165(76)90376-7
- Kumar, N. and D. Das. 2000. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem. 35: 589-594 https://doi.org/10.1016/S0032-9592(99)00109-0
- Kumar, N., A. Ghosh, and D. Das. 2001. Redirection of biochemical pathways for the enhancement of H2 production by Enterobacter cloacae. Biotechnol. Lett. 23: 537-541. https://doi.org/10.1023/A:1010334803961
- Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. Wiley, New York.
- Lay, J.-J., Y.-Y. Li, and T. Noike. 1997. Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res. 31: 1518-1524. https://doi.org/10.1016/S0043-1354(96)00413-7
-
Mandal, B., K. Nath, and D. Das. 2006. Improvement of biohydrogen production under decreased partial pressure of
$H_{2}$ by Enterobacter cloacae. Biotechnol. Lett. 28: 831-835. https://doi.org/10.1007/s10529-006-9008-8 - Mitchell, R. J., J. S. Kim, B. S. Jeon, and B. I. Sang. 2009. Continuous hydrogen and butyric acid fermentation by immobilized Clostridium tyrobutyricum ATCC 25755: Effects of the glucose concentration and hydraulic retention time. Bioresour. Technol. 100: 5352-5355. https://doi.org/10.1016/j.biortech.2009.05.046
- Mizuno, O., R. Dinsdale, F. R. Hawkes, D. L. Hawkes, and T. Noike. 2000. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour. Technol. 73: 59-65.
- Mollet, C., M. Drancourt, and D. Raoult. 1997. rpoB sequence analysis as a novel basis for bacterial identification. Mol. Microbiol. 26: 1005-1011. https://doi.org/10.1046/j.1365-2958.1997.6382009.x
- Morse, R., K. O'Hanlon, and M. D. Collins. 2002. Phylogenetic, amino acid content and indel analyses of the beta subunit of DNA-dependent RNA polymerase of Gram-positive and Gramnegative bacteria. Int. J. Syst. Evol. Microbiol. 52: 1477-1484. https://doi.org/10.1099/ijs.0.02159-0
- Oh, G., L. Zhang, and D. Jahng. 2008. Osmoprotectants enhance methane production from the anaerobic digestion of food wastes containing a high content of salt. J. Chem. Technol. Biotechnol. 83: 1204-1210. https://doi.org/10.1002/jctb.1923
- Oh, Y.-K., E.-H. Seol, E. Y. Lee, and S. Park. 2002. Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int. J. Hydrogen Energy 27: 1373-1379. https://doi.org/10.1016/S0360-3199(02)00100-3
- Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
- Shin, J.-H., J. H. Yoon, E. K. Ahn, M.-S. Kim, S. J. Sim, and T. H. Park. 2007. Fermentative hydrogen production by the newly isolated Enterobacter asburiae SNU-1. Int. J. Hydrogen Energy 32: 192-199. https://doi.org/10.1016/j.ijhydene.2006.08.013
- Sode, K., M. Watanabe, H. Makimoto, and M. Tomiyama. 1999. Construction and characterization of fermentative lactate dehydrogenase Escherichia coli mutant and its potential for bacterial hydrogen production. Appl. Biochem. Biotechnol. 77: 317-323. https://doi.org/10.1385/ABAB:77:1-3:317
- Taherzadeh, M. J. and K. Karimi. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int. J. Mol. Sci. 9: 1621-1651. https://doi.org/10.3390/ijms9091621
- Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
- Tanisho, S., Y. Suzuki, and N. Wakao. 1987. Fermentative hydrogen evolution by Enterobacter aerogenes strain E.82005. Int. J. Hydrogen Energy 12: 623-627.
- Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
- Vandenbrink, J. P., M. P. Delgado, J. R. Frederick, and F. A. Feltus. 2010. A sorghum diversity panel biofuel feedstock screen for genotypes with high hydrolysis yield potential. Ind. Crop. Prod. 31: 444-448. https://doi.org/10.1016/j.indcrop.2010.01.001
- Vatsala, T. M. 1992. Hydrogen production from (cane-molasses) stillage by Citrobacter freundii and its use in improving methanogenesis. Int. J. Hydrogen Energy 17: 923-927. https://doi.org/10.1016/0360-3199(92)90052-X
- Yoshida, M., Y. Liu, S. Uchida, K. Kawarada, Y. Ukagami, H. Ichinose, et al. 2008. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci. Biotechnol. Biochem. 72: 805-810. https://doi.org/10.1271/bbb.70689
Cited by
- Biohydrogen production under hyper salinity stress by an anaerobic sequencing batch reactor with mixed culture vol.16, pp.2, 2013, https://doi.org/10.1007/s40201-018-0304-8
- Biochemical and nutritional characterization of the medfly gut symbiont Enterobacter sp. AA26 for its use as probiotics in sterile insect technique applications vol.19, pp.suppl2, 2013, https://doi.org/10.1186/s12896-019-0584-9