DOI QR코드

DOI QR Code

Production of Hydrogen and Volatile Fatty Acid by Enterobacter sp. T4384 Using Organic Waste Materials

  • Kim, Byung-Chun (Energy Materials and Process, BK 21, Hanyang University) ;
  • Deshpande, Tushar R. (Clean Energy Center, Korea Institute of Science and Technology) ;
  • Chun, Jongsik (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Yi, Sung Chul (Department of Chemical Engineering, Department of Fuel Cells and Hydrogen Technology, Hanyang University) ;
  • Kim, Hyunook (Department of Environmental Engineering, University of Seoul) ;
  • Um, Youngsoon (Clean Energy Center, Korea Institute of Science and Technology) ;
  • Sang, Byoung-In (Department of Chemical Engineering, Department of Fuel Cells and Hydrogen Technology, Hanyang University)
  • Received : 2012.05.08
  • Accepted : 2012.09.27
  • Published : 2013.02.28

Abstract

In a study of hydrogen-producing bacteria, strain T4384 was isolated from rice field samples in the Republic of Korea. The isolate was identified as Enterobacter sp. T4384 by phylogenetic analysis of 16S rRNA and rpoB gene sequences. Enterobacter sp. T4384 grew at a temperature range of $10-45^{\circ}C$ and at an initial pH range of 4.5-9.5. Strain T4384 produced hydrogen at 0-6% NaCl by using glucose, fructose, and mannose. In serum bottle cultures using a complete medium, Enterobacter sp. T4384 produced 1,098 ml/l $H_2$, 4.0 g/l ethanol, and 1.0 g/l acetic acid. In a pH-regulated jar fermenter culture with the biogas removed, 2,202 ml/l $H_2$, 6.2 g/l ethanol, and 1.0 g/l acetic acid were produced, and the lag-phase time was 4.8 h. Strain T4384 metabolized the hydrolysate of organic waste for the production of hydrogen and volatile fatty acid. The strain T4384 produced 947 ml/l $H_2$, 3.2 g/l ethanol, and 0.2 g/l acetic acid from 6% (w/v) food waste hydrolysate; 738 ml/l $H_2$, 4.2 g/l ethanol, and 0.8 g/l acetic acid from Miscanthus sinensis hydrolysate; and 805 ml/l $H_2$, 5.0 g/l ethanol, and 0.7 g/l acetic acid from Sorghum bicolor hydrolysate.

Keywords

References

  1. Asada, Y. and J. Miyake. 1999. Photobiological hydrogen production. J. Biosci. Bioeng. 88: 1-6. https://doi.org/10.1016/S1389-1723(99)80166-2
  2. Cho, D. H., S. J. Shin, Y. Bae, C. Park, and Y. H. Kim. 2011. Ethanol production from acid hydrolysates based on the construction and demolition wood waste using Pichia stipitis. Bioresour. Technol. 102: 4439-4443. https://doi.org/10.1016/j.biortech.2010.12.094
  3. Chun, J., J. H. Lee, Y. Jung, M. Kim, S. Kim, B. K. Kim, and Y. W. Lim. 2007. EzTaxon: A web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  4. Das, D. and T. N. Veziroglu. 2001. Hydrogen production by biological processes: A survey of literature. Int. J. Hydrogen Energy 26: 13-28. https://doi.org/10.1016/S0360-3199(00)00058-6
  5. Han, S. K. and H. S. Shin. 2004. Performance of an innovative two-stage process converting food waste to hydrogen and methane. J. Air Waste Manage. 54: 242-249. https://doi.org/10.1080/10473289.2004.10470895
  6. Hawkes, F. R., R. Dinsdale, D. L. Hawkes, and I. Hussy. 2002. Sustainable fermentative hydrogen production: Challenges for process optimisation. Int. J. Hydrogen Energy 27: 1339-1347. https://doi.org/10.1016/S0360-3199(02)00090-3
  7. Holmes, B. and N. Jones. 2003. Brace yourself for the end of cheap oil. New Sci. 179: 9.
  8. Jayasinghearachchi, H. S., P. M. Sarma, S. Singh, A. Aginihotri, A. K. Mandal, and B. Lal. 2009. Fermentative hydrogen production by two novel strains of Enterobacter aerogenes HGN-2 and HT 34 isolated from sea buried crude oil pipelines Int. J. Hydrogen Energy 34: 7197-7207. https://doi.org/10.1016/j.ijhydene.2009.06.079
  9. Kalia, V. C., S. R. Jain, A. Kumar, and A. P. Joshi. 1994. Fermentation of bio-waste to H2 by Bacillus licheniformis. World J. Microbiol. Biotechnol. 10: 224-227. https://doi.org/10.1007/BF00360893
  10. Karube, I., T. Matsunaga, S. Tsuru, and S. Suzuki. 1976. Continuous hydrogen production by immobilized whole cells of Clostridium butyricum. Biochim. Biophys. Acta 444: 338-343. https://doi.org/10.1016/0304-4165(76)90376-7
  11. Kumar, N. and D. Das. 2000. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem. 35: 589-594 https://doi.org/10.1016/S0032-9592(99)00109-0
  12. Kumar, N., A. Ghosh, and D. Das. 2001. Redirection of biochemical pathways for the enhancement of H2 production by Enterobacter cloacae. Biotechnol. Lett. 23: 537-541. https://doi.org/10.1023/A:1010334803961
  13. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In E. Stackebrandt and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. Wiley, New York.
  14. Lay, J.-J., Y.-Y. Li, and T. Noike. 1997. Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Res. 31: 1518-1524. https://doi.org/10.1016/S0043-1354(96)00413-7
  15. Mandal, B., K. Nath, and D. Das. 2006. Improvement of biohydrogen production under decreased partial pressure of $H_{2}$ by Enterobacter cloacae. Biotechnol. Lett. 28: 831-835. https://doi.org/10.1007/s10529-006-9008-8
  16. Mitchell, R. J., J. S. Kim, B. S. Jeon, and B. I. Sang. 2009. Continuous hydrogen and butyric acid fermentation by immobilized Clostridium tyrobutyricum ATCC 25755: Effects of the glucose concentration and hydraulic retention time. Bioresour. Technol. 100: 5352-5355. https://doi.org/10.1016/j.biortech.2009.05.046
  17. Mizuno, O., R. Dinsdale, F. R. Hawkes, D. L. Hawkes, and T. Noike. 2000. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour. Technol. 73: 59-65.
  18. Mollet, C., M. Drancourt, and D. Raoult. 1997. rpoB sequence analysis as a novel basis for bacterial identification. Mol. Microbiol. 26: 1005-1011. https://doi.org/10.1046/j.1365-2958.1997.6382009.x
  19. Morse, R., K. O'Hanlon, and M. D. Collins. 2002. Phylogenetic, amino acid content and indel analyses of the beta subunit of DNA-dependent RNA polymerase of Gram-positive and Gramnegative bacteria. Int. J. Syst. Evol. Microbiol. 52: 1477-1484. https://doi.org/10.1099/ijs.0.02159-0
  20. Oh, G., L. Zhang, and D. Jahng. 2008. Osmoprotectants enhance methane production from the anaerobic digestion of food wastes containing a high content of salt. J. Chem. Technol. Biotechnol. 83: 1204-1210. https://doi.org/10.1002/jctb.1923
  21. Oh, Y.-K., E.-H. Seol, E. Y. Lee, and S. Park. 2002. Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int. J. Hydrogen Energy 27: 1373-1379. https://doi.org/10.1016/S0360-3199(02)00100-3
  22. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  23. Shin, J.-H., J. H. Yoon, E. K. Ahn, M.-S. Kim, S. J. Sim, and T. H. Park. 2007. Fermentative hydrogen production by the newly isolated Enterobacter asburiae SNU-1. Int. J. Hydrogen Energy 32: 192-199. https://doi.org/10.1016/j.ijhydene.2006.08.013
  24. Sode, K., M. Watanabe, H. Makimoto, and M. Tomiyama. 1999. Construction and characterization of fermentative lactate dehydrogenase Escherichia coli mutant and its potential for bacterial hydrogen production. Appl. Biochem. Biotechnol. 77: 317-323. https://doi.org/10.1385/ABAB:77:1-3:317
  25. Taherzadeh, M. J. and K. Karimi. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. Int. J. Mol. Sci. 9: 1621-1651. https://doi.org/10.3390/ijms9091621
  26. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  27. Tanisho, S., Y. Suzuki, and N. Wakao. 1987. Fermentative hydrogen evolution by Enterobacter aerogenes strain E.82005. Int. J. Hydrogen Energy 12: 623-627.
  28. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882. https://doi.org/10.1093/nar/25.24.4876
  29. Vandenbrink, J. P., M. P. Delgado, J. R. Frederick, and F. A. Feltus. 2010. A sorghum diversity panel biofuel feedstock screen for genotypes with high hydrolysis yield potential. Ind. Crop. Prod. 31: 444-448. https://doi.org/10.1016/j.indcrop.2010.01.001
  30. Vatsala, T. M. 1992. Hydrogen production from (cane-molasses) stillage by Citrobacter freundii and its use in improving methanogenesis. Int. J. Hydrogen Energy 17: 923-927. https://doi.org/10.1016/0360-3199(92)90052-X
  31. Yoshida, M., Y. Liu, S. Uchida, K. Kawarada, Y. Ukagami, H. Ichinose, et al. 2008. Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci. Biotechnol. Biochem. 72: 805-810. https://doi.org/10.1271/bbb.70689

Cited by

  1. Biohydrogen production under hyper salinity stress by an anaerobic sequencing batch reactor with mixed culture vol.16, pp.2, 2013, https://doi.org/10.1007/s40201-018-0304-8
  2. Biochemical and nutritional characterization of the medfly gut symbiont Enterobacter sp. AA26 for its use as probiotics in sterile insect technique applications vol.19, pp.suppl2, 2013, https://doi.org/10.1186/s12896-019-0584-9