DOI QR코드

DOI QR Code

Metabolic Changes of Phomopsis longicolla Fermentation and Its Effect on Antimicrobial Activity Against Xanthomonas oryzae

  • Choi, Jung Nam (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Kim, Jiyoung (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Ponnusamy, Kannan (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Lim, Chaesung (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Kim, Jeong Gu (Genomics Division, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA)) ;
  • Muthaiya, Maria John (Department of Bioscience and Biotechnology, Konkuk University) ;
  • Lee, Choong Hwan (Department of Bioscience and Biotechnology, Konkuk University)
  • Received : 2012.10.10
  • Accepted : 2012.10.26
  • Published : 2013.02.28

Abstract

Bacterial blight, an important and potentially destructive bacterial disease in rice caused by Xanthomonas oryzae pv. oryzae (Xoo), has recently developed resistance to the available antibiotics. In this study, mass spectrometry (MS)-based metabolite profiling and multivariate analysis were employed to investigate the correlation between timedependent metabolite changes and antimicrobial activities against Xoo over the course of Phomopsis longicolla S1B4 fermentation. Metabolites were clearly differentiated based on fermentation time into phase 1 (days 4-8) and phase 2 (days 10-20) in the principal component analysis (PCA) plot. The multivariate statistical analysis showed that the metabolites contributing significantly for phases 1 and 2 were deacetylphomoxanthone B, monodeacetylphomoxanthone B, fusaristatin A, and dicerandrols A, B, and C as identified by liquid chromatography-mass spectrometry (LC-MS), and dimethylglycine, isobutyric acid, pyruvic acid, ribofuranose, galactofuranose, fructose, arabinose, hexitol, myristic acid, and propylstearic acid were identified by gas chromatography-mass spectrometry (GC-MS)-based metabolite profiling. The most significantly different secondary metabolites, especially deacetylphomoxanthone B, monodeacetylphomoxanthone B, and dicerandrol A, B and C, were positively correlated with antibacterial activity against Xoo during fermentation.

Keywords

References

  1. Choi, J. N., J. Kim, M. Y. Lee, D. K. Park, Y. S. Hong, and C. H. Lee. 2010. Metabolomics revealed novel isoflavones and optimal cultivation time of Cordyceps militaris fermentation. J. Agric. Food Chem. 58: 4258-4267. https://doi.org/10.1021/jf903822e
  2. Choi, Y. H., H. K. Kim, A. Hazekamp, C. Erkelens, A. W. Lefeber, and R. Verpoorte. 2004. Metabolomic differentiation of Cannabis sativa cultivars using 1H NMR spectroscopy and principal component analysis. J. Nat. Prod. 67: 953-957. https://doi.org/10.1021/np049919c
  3. Cui, C. B., M. Ubukata, H. Kakeya, R. Onose, G. Okada, I. Takahashi, et al. 1996. Acetophthalidin, a novel inhibitor of mammalian cell cycle, produced by a fungus isolated from a sea sediment. J. Antibiot. 49: 216-219. https://doi.org/10.7164/antibiotics.49.216
  4. Holmes, E., R. L. Loo, J. Stamler, M. Bictash, I. K. Yap, Q. Chan, et al. 2008. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 453: 396-400. https://doi.org/10.1038/nature06882
  5. Kim, D. H., R. M. Jarvis, Y. Xu, A. W. Oliver, J. W. Allwood, L. Hampson, et al. 2010. Combining metabolic fingerprinting and foot printing to understand the phenotypic response of HPV16 E6 expressing cervical carcinoma cells exposed to the HIV anti-viral drug lopinavir. Analyst 135: 1235-1244. https://doi.org/10.1039/b923046g
  6. Lim, C., J. Kim, J. N. Choi, K. Ponnusamy, Y. Jeon, S. U. Kim, et al. 2010. Identification, fermentation, and bioactivity against Xanthomonas oryzae of antimicrobial metabolites isolated from Phomopsis longicolla S1B4. J. Microbiol. Biotechnol. 20: 494-500.
  7. Rukachaisirikul, V., U. Sommart, S. Phongpaichit, J. Sakayaroj, and K. Kirtikara. 2008. Metabolites from the endophytic fungus Phomopsis sp. PSU-D15. Phytochemistry 69: 783-787. https://doi.org/10.1016/j.phytochem.2007.09.006
  8. Salzberg, S. L., D. D. Sommer, M. C. Schatz, A. M. Phillippy, P. D. Rabinowicz, S. Tsuge, et al. 2008. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. J. BMC Genomics 9: 204. https://doi.org/10.1186/1471-2164-9-204
  9. Shen, Y. and P. Ronald. 2002. Molecular determinants of disease and resistance in interactions of Xanthomonas oryzae pv. oryzae and rice. Microbes Infect. 4: 1361-1367. https://doi.org/10.1016/S1286-4579(02)00004-7
  10. Shyur, L. F. and N. S. Yang. 2008. Metabolomics for phytomedicine research and drug development. Curr. Opin. Chem. Biol. 12: 66-71. https://doi.org/10.1016/j.cbpa.2008.01.032
  11. Son, H. S., G. S. Hwang, K. M. Kim, H. J. Ahn, W. M. Park, F. Van Den Berg, et al. 2009. Metabolomic studies on geographical grapes and their wines using 1H NMR analysis coupled with multivariate statistics. J. Agric. Food Chem. 57: 1481-1490. https://doi.org/10.1021/jf803388w
  12. Villas-Boas, S. G., S. Mas, M. Akesson, J. Smedsgaard, and J. Nielsen. 2005. Mass spectrometry in metabolome analysis. Mass Spectrom. Rev. 24: 613-646. https://doi.org/10.1002/mas.20032
  13. Wagenaar, M. M. and J. Clardy. 2001. Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus Phomopsis longicolla isolated from an endangered mint. J. Nat. Prod. 64: 1006-1009. https://doi.org/10.1021/np010020u

Cited by

  1. The genus Diaporthe: a rich source of diverse and bioactive metabolites vol.16, pp.5, 2013, https://doi.org/10.1007/s11557-017-1288-y
  2. Enantioselective Total Synthesis of Blennolide H and Phomopsis‐H76 A and Determination of Their Structure vol.24, pp.35, 2018, https://doi.org/10.1002/chem.201801323