References
- Armone, A., G. Nasini, and O. V. de Para. 1991. A reinvestigation of the structure of biruloquinone, a 9,10-phenanthrenequinone isolated from Mycosphaerella rubella. Phytochemistry 31: 2729-2731.
-
Barkats, M., S. Millecamps, P. Abrioux, M. C. Geoffroy, and J. Mallet. 2000. Overexpression of glutathione peroxidase increases the resistance of neuronal cells to A
$\beta$ -mediated neurotoxicity. J. Neurochem. 75: 1438-1446. - Boldogh, I., M. L. Kruzel, and T. M. Colostrinin. 2008. An oxidative stress modulator for prevention and treatment of agerelated disorders. J. Alzheimers Dis. 13: 303-321. https://doi.org/10.3233/JAD-2008-13308
- Ellman, G. L. and K. D. Courtney. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88-90. https://doi.org/10.1016/0006-2952(61)90145-9
- Keston, A. S. and R. Brandt. 1965. The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal. Biochem. 11: 1-5. https://doi.org/10.1016/0003-2697(65)90034-5
- Krivoshchekova, O. E., L. S. Stepanenko, N. P. Mishchenko, V. A. Denisenko, and O. B. Maksimov. 1983. A study of aromatic metabolites of lichens of the family Parmeliaceae. II. Pigments. Chem. Nat. Comp. 19: 270-274. https://doi.org/10.1007/BF00579756
- Lenta, B. N., K. P. Devkota, S. Ngouela, F. F. Boyom, Q. Naz, M. I. Choudhary, E. Tsamo, P. J. Rosenthal, and N. Sewald. 2008. Anti-plasmodial and cholinesterase inhibiting activities of some constituents of Psorospermum glaberrimum. Chem. Pharm. Bull. 56: 222-226. https://doi.org/10.1248/cpb.56.222
- Lovell, M. A. and W. R. Markesbery. 2007. Oxidative damage in mild cognitive impairment and early Alzheimer's disease. J. Neurosci. Res. 85: 3036-3040. https://doi.org/10.1002/jnr.21346
-
Moon, J. H., S. Y. Kim, H. G. Lee, S. U. Kim, and Y. B. Lee. 2008. Activation of nicotinic acetylcholine receptor prevents the production of reactive oxygen species in fibrillar
$\beta$ amyloid peptide (1-42)-stimulated microglia. Exp. Mol. Med. 40: 11-18. https://doi.org/10.3858/emm.2008.40.1.11 - Mukherjee, P. K., V. Kumar, M. Mal, and P. J. Houghton. 2007. Acetylcholinesterase inhibitors from plants. Phytomedicine 14: 289-300. https://doi.org/10.1016/j.phymed.2007.02.002
- Ogura, H., T. Kosasa, Y. Kuriya, and Y. Yamanishi. 2000. Comparison of inhibitory activities of donepezil and other cholinesterase inhibitors on acetylcholinesterase and butyrylcholinesterase in vitro. Methods Find. Exp. Clin. Pharmacol. 22: 609-613. https://doi.org/10.1358/mf.2000.22.8.701373
- Oksanen, I. 2006. Ecological and biotechnological aspects of lichens. Appl. Microbiol. Biotechnol. 73: 723-734. https://doi.org/10.1007/s00253-006-0611-3
- Roberson, E. and L. Mucke. 2006. 100 years and counting: Prospects for defeating Alzheimer's disease. Science 314: 781-784 https://doi.org/10.1126/science.1132813
- Sayre, L. M., G. Perry, and M. A. Smith. 2008. Oxidative stress and neurotoxicity. Chem. Res. Toxicol. 21: 172-188. https://doi.org/10.1021/tx700210j
- Shi, D. H., J. H. Wu, H. M. Ge, and R. X. Tan. 2009. Protective effect of hopeahainol A, a novel acetylcholinesterase inhibitor, on hydrogen peroxide-induced injury in PC12 cells. Environ. Toxicol. Pharmacol. 28: 30-36. https://doi.org/10.1016/j.etap.2009.01.009
- Small, D. H. 2005. Acetylcholinesterase inhibitors for the treatment of dementia in Alzheimer's disease: Do we need new inhibitors? Expert Opin. Emerg. Drugs 10: 817-825. https://doi.org/10.1517/14728214.10.4.817
- Stocker-Worgotter, E. 2008. Metabolic diversity of lichenforming ascomycetous fungi: Culturing, polyketide and shikimate metabolite production, and PKS genes. Nat. Prod. Rep. 25: 188-200. https://doi.org/10.1039/b606983p
-
Sultana, R., S. Newman, H. Mohmmad-Abdul, J. N. Keller, and D. A. Butterfield. 2004. Protective effect of the xanthate, D609, on Alzheimer's amyloid
$\beta$ -peptide (1-42)-induced oxidative stress in primary neuronal cells. Free Radic. Res. 38: 449-458. https://doi.org/10.1080/1071576042000206478 - Terry, A. V. and J. J. Buccafusco. 2003. The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: Recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther. 306: 821-827. https://doi.org/10.1124/jpet.102.041616
- Wimo, A., B. Winblad, and L. Jönsson. 2007. An estimate of the total worldwide societal costs of dementia in 2005. Alzheimers Dement. 3: 81-91. https://doi.org/10.1016/j.jalz.2007.02.001
- Yamamoto, Y. 2002. Discharge and germination of lichen ascospores in the laboratory. Lichenology 1: 11-22. (in Japanese)
Cited by
- Recent literature on lichens-231 vol.116, pp.4, 2013, https://doi.org/10.1639/0007-2745-116.4.399
- Draft Genome Sequence of Cladonia macilenta KoLRI003786, a Lichen-Forming Fungus Producing Biruloquinone vol.1, pp.5, 2013, https://doi.org/10.1128/genomea.00695-13
- A marine sponge associated strain of Bacillus subtilis and other marine bacteria can produce anticholinesterase compounds vol.13, pp.None, 2013, https://doi.org/10.1186/1475-2859-13-24
- Antioxidant Activity and Mechanisms of Action of Natural Compounds Isolated from Lichens: A Systematic Review vol.19, pp.9, 2013, https://doi.org/10.3390/molecules190914496
- Ramalina capitata (Ach.) Nyl. acetone extract: HPLC analysis, genotoxicity, cholinesterase, antioxidant and antibacterial activity vol.16, pp.None, 2017, https://doi.org/10.17179/excli2017-301
- Copper(0)/Selectfluor System-Promoted Oxidative Carbon–Carbon Bond Cleavage/Annulation of o-Aryl Chalcones: An Unexpected Synthesis of 9,10-Phenanthraquinone Derivatives vol.82, pp.1, 2017, https://doi.org/10.1021/acs.joc.6b02212
- Research Advances and Detection Methodologies for Microbe-Derived Acetylcholinesterase Inhibitors: A Systemic Review vol.22, pp.1, 2017, https://doi.org/10.3390/molecules22010176
- Secondary metabolism in the lichen symbiosis vol.47, pp.5, 2013, https://doi.org/10.1039/c7cs00431a
- Introduction of marine‐derived Streptomyces sp. UTMC 1334 as a source of pyrrole derivatives with anti‐acetylcholinesterase activity vol.125, pp.5, 2013, https://doi.org/10.1111/jam.14043
- Suzuki cross coupling followed by cross dehydrogenative coupling: An efficient one pot synthesis of Phenanthrenequinones and analogues vol.61, pp.13, 2013, https://doi.org/10.1016/j.tetlet.2020.151701
- Establishment of Agrobacterium tumefaciens-Mediated Transformation of Cladonia macilenta, a Model Lichen-Forming Fungus vol.7, pp.4, 2013, https://doi.org/10.3390/jof7040252
- Transcriptome Analysis Identifies a Gene Cluster for the Biosynthesis of Biruloquinone, a Rare Phenanthraquinone, in a Lichen-Forming Fungus Cladonia macilenta vol.7, pp.5, 2013, https://doi.org/10.3390/jof7050398
- Linking a Gene Cluster to Atranorin, a Major Cortical Substance of Lichens, through Genetic Dereplication and Heterologous Expression vol.12, pp.3, 2013, https://doi.org/10.1128/mbio.01111-21
- Potent and Selective Inhibitors of Human Monoamine Oxidase A from an Endogenous Lichen Fungus Diaporthe mahothocarpus vol.7, pp.10, 2013, https://doi.org/10.3390/jof7100876