DOI QR코드

DOI QR Code

Heterologous Expression of a Putative $K^+/H^+$ Antiporter of S. coelicolor A3(2) Enhances $K^+$, Acidic-pH Shock Tolerances, and Geldanamycin Secretion

  • Song, Jae Yang (Bio Lab, Energy R&D Center, SK Innovation Global Technology) ;
  • Seo, Young Bin (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Hong, Soon-Kwang (Division of Bioscience and Bioinformatics, Myung-Ji University) ;
  • Chang, Yong Keun (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2012.07.17
  • Accepted : 2012.10.27
  • Published : 2013.02.28

Abstract

Heterologous expression of a putative $K^+/H^+$ antiporter of Streptomyces coelicolor A3(2) (designated as sha4) in E. coli and Streptomyces hygroscopicus JCM4427 showed enhanced tolerance to $K^+$ stress, acidic-pH shock, and/or geldanamycin production under $K^+$ stress. In a series of $K^+$ extrusion experiments with sha4-carrying E. coli deficient in the $K^+/H^+$ antiporter, a restoration of impaired $K^+$ extrusion activity was observed. Based on this, it was concluded that sha4 was a true $K^+/H^+$ antiporter. In different sets of experiments, the sha4-carrying E. coli showed significantly improved tolerances to $K^+$ stresses and acidic-pH shock, whereas sha4-carrying S. hygroscopicus showed an improvement in $K^+$ stress tolerance only. The sha4-carrying S. hygroscopicus showed much higher geldanamycin productivity than the control under $K^+$ stress condition. In another set of experiments with a production medium, the secretion of geldanamycin was also significantly enhanced by the expression of sha4.

Keywords

References

  1. Apse, M. P., G. S. Aharon, W. A. Snedden, and E. Blumward. 1999. Salt tolerance conferred by overexpression of a vacuolar $Na^{+}/H^{+}$ antiporter in Arabidopsis. Science 285: 1256-1258. https://doi.org/10.1126/science.285.5431.1256
  2. Bakker, E. P., I. R. Booth, U. Dinnbier, W. Epstein, and A. Gajewsak. 1987. Evidence for multiple $K^{+}$ export system in Escherichia coli. J. Bacteriol. 169: 3743-3749. https://doi.org/10.1128/jb.169.8.3743-3749.1987
  3. Bently, S. D., K. F. Chater, A.-M. Cerdeno-Tarraga, G. L. Chaliis, N. R. Thomson, K. D. James, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147. https://doi.org/10.1038/417141a
  4. Bierman, M., R. Logan, K. O'Brien, E. T. Seno, R. N. Rao, and B. E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: 43-49. https://doi.org/10.1016/0378-1119(92)90627-2
  5. Breed, R. and W. D. Dotterrer. 1916. The number of colonies allowable on satisfactory agar plates. J. Bacteriol. 1: 321-331.
  6. Brini, F., M. Hanin, I. Mezghani, G. A. Bekowitz, and K. Masmoudi. 2007. Overexpression of wheat $Na^{+}/H^{+}$ antiporter TNHX1 and $H^{+}$-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J. Exper. Bot. 58: 301-308.
  7. Bystrykh, L. V., M. A. Fernandez-Moreno, J. K. Herrema, F. Malpartida, D. A. Hopwood, and L. Dijkhuizen. 1996. Production of actinorhodin-related "blue pigments" by Streptomyces coelicolor A3(2). J. Bacteriol. 178: 2238-2244. https://doi.org/10.1128/jb.178.8.2238-2244.1996
  8. Cagnac, O., M. Leterrir, M. Yeager, and E. Bumwald. 2007. Identification and characterization of Vnx1p, a novel type of vacuolar monovalent cation/$H^{+}$ antiporter of Saccharomyces cerevisiae. J. Biol. Chem. 282: 24284-24293. https://doi.org/10.1074/jbc.M703116200
  9. Cheng, J., A. A. Guffanti, and T. A. Krulwich. 1994. The chromosomal tetracycline resistance locus of Bacillus subtilis encodes a $Na^{+}/H^{+}$ antiporter that is physiologically important at elevated pH. J. Biol. Chem. 269: 27365-27371.
  10. Clyne, M., A. Labigne, and B. Drumm. 1995. Helicobacter pylori requires an acidic environment to survive in the presence of urea. Infect. Immun. 63: 1669-1673.
  11. Doull, J. C., S. Y. Ayer, A. K. Singh, and P. Thibault. 1993. Production of a novel polyketide antibiotic, jadomycin B, by Streptomyces venezuelae following heat shock. J. Antibiot. 44: 869-871.
  12. Flett, F. V., V. Mersenias, and C. P. Smith. 1998. High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol. Lett. 155: 223-229.
  13. Gaxiola, R. A., R. Rao, A. Sherman, P. Grisafi, S. L. Alper, and G. R. Fink. 1999. The Arabidopsis thaliana proton transporter, AtNhx and Avp1, can function in cation detoxification in yeast. Proc. Natl. Acad. Sci. USA 96: 1480-1485. https://doi.org/10.1073/pnas.96.4.1480
  14. Goldberg, B. G., T. Arbel, J. Chen, R. Karpel, G. A. Mackie, S. Schuldiner, and E. Padan. 1987. Characterization of a $Na^{+}/H^{+}$ antiporter gene of Escherichia coli. Proc. Natl. Acad. Sci. USA 84: 2615-2619. https://doi.org/10.1073/pnas.84.9.2615
  15. Guffanti, A. A., D. E. Cohen, H. R. Kaback, and T. A. Krulwich. 1981. Relationship between the $Na^{+}/H^{+}$ antiporter and $Na^{+}$/substrate symport in Bacillus alcalophilus. Proc. Natl. Acad. Sci. USA 78: 1481-1484. https://doi.org/10.1073/pnas.78.3.1481
  16. Hallam, T. J. and A. H. Tashjian. 1987. Thyrotropin-releasing hormone activates $Na^{+}/H^{+}$ exchange in rat pituitary cells. J. Biochem. 242: 411-416. https://doi.org/10.1042/bj2420411
  17. Hayes, A., G. Hobbs, C. P. Smith, S. G. Oliver, and P. R. Butler. 1997. Environmental signals triggering methylenomycin production by Streptomyces coelicolor A(3)2. J. Bacteriol. 179: 5511-5515. https://doi.org/10.1128/jb.179.17.5511-5515.1997
  18. Katiyar-Agarwal, S., J. Zhu, K. Kim, M. Agarwal, X. Fu, A. Huang, and J.-K. Zhu. 2006. The plasma membrane $Na^{+}/H^{+}$ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA 103: 18816-18821. https://doi.org/10.1073/pnas.0604711103
  19. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics, pp. 161-206. The John Innes Foundation, Norwich, UK.
  20. Killham, K. and M. K. Firesone. 1984. Salt stress control of intracellular solutes in Streptomyces indigenous to saline soils. Appl. Environ. Microbiol. 47: 301-306.
  21. Kim, Y. J. 2007. Gene-expression analyses of acidic pH shock effects on actinorhodin production in Streptomyces coelicolor A3(2). Ph.D. Thesis, KAIST, Daejeon, Korea.
  22. Kim, C. J., Y. K. Chang, and G.-T. Chun. 2000. Enhancement of kasugamycin production by pH shock in batch cultures of Streptomyces kasugaensis. Biotechnol. Prog. 16: 548-552. https://doi.org/10.1021/bp000038f
  23. Kim, Y. J., M. H. Moon, J. S. Lee, S. K. Hong, and Y. K. Chang. 2011. Roles of putative sodium-hydrogen antiporter (SHA) genes in S. coelicolor A3(2) culture with pH variation. J. Microbiol. Biotechnol. 21: 979-987. https://doi.org/10.4014/jmb.1105.05003
  24. Kim, Y. J., J. Y. Song, M. H. Moon, C. P. Smith, S. K. Hong, and Y. K. Chang. 2007. pH shock induces overexpression of regulatory and biosynthetic genes for actinorhodin production in Streptomyces coelicolor A3(2). Appl. Microbiol. Biotechnol. 76: 1119-1130. https://doi.org/10.1007/s00253-007-1083-9
  25. Kosono, S., Y. Ohashi, F. Kawamura, M. Kitada, and T. Kudo. 2000. Function of a principal $Na^{+}/H^{+}$ antiporter, ShaA, is required for initiation of sporulation in Bacillus subtilis. J. Bacteriol. 182: 898-904. https://doi.org/10.1128/JB.182.4.898-904.2000
  26. Krishnamurth, P., M. Parlow, J. B. Zitzer, N. B. Vakil, H. L. Mobley, M. Levy, et al. 1998. Helicobacter pylori containing only cytoplasmic urease is susceptible to acid. Infect. Immun. 66: 5060-5066.
  27. Liew, C. W., R. M. Illias, N. M. Mahadi, and N. Najimudin. 2007. Expression of the $Na^{+}/H^{+}$ antiporter gene (g1-nhaC) of alkaliphilic Bacillus sp. G1 in Escherichia coli. FEMS Microbiol. Lett. 276: 114-122. https://doi.org/10.1111/j.1574-6968.2007.00925.x
  28. Ohyama, T., R. Imaizumi, K. Igarashi, and H. Kobayashi. 1992. Escherichia coli is able to grow with negligible sodium ion extrusion activity at alkaline pH. J. Bacteriol. 174: 7743-7749. https://doi.org/10.1128/jb.174.23.7743-7749.1992
  29. Padan, E. and S. Schuldiner. 1993. $Na^{+}/H^{+}$ antiporters, molecular devices that couple the $Na^{+}$ and$H^{+}$ circulation in cells. J. Bioenerg. Biomembr. 25: 647-669.
  30. Pinner, E., Y. Kolter, E. Padan, and S. Schuldiner. 1993. Physiological role of nhaB, a specific $Na^{+}/H^{+}$ antiporter in Escherichia coli. J. Biol. Chem. 268: 1729-1734.
  31. Padan, E. and S. Schuldiner. 1994. Molecular physiology of $Na^{+}/H^{+}$ antiporters, key transporters in circulation of $Na^{+}$ and $H^{+}$ in cells. Biochim. Biophys. Acta 1185: 129-151. https://doi.org/10.1016/0005-2728(94)90204-6
  32. Padan, E., M. Venture, Y. Gerchman, and N. Dover. 2001. $Na^{+}/H^{+}$ antiporters. Biochim. Biophys. Acta 1505: 144-157. https://doi.org/10.1016/S0005-2728(00)00284-X
  33. Rausch, T., M. Kirsch, R. Low, A. Lehr, R. Viereck, and A. Zhigang. 1996. Salt stress responses of higher plants: The role of proton pump and $Na^{+}/H^{+}$ antiporters J. Plant Physiol. 148: 425-433. https://doi.org/10.1016/S0176-1617(96)80275-6
  34. Renzo, G. D., S. Amoroso, A. Bassi, A. Fatatis, M. Cataldi, A. M. Colao, et al. 1995. Role of the $Na^{+}-Ca^{2+}$ and $Na^{+}/H^{+}$ antiporters in prolactin release from anterior pituitary cells in primary culture. Euro. J. Phamacol. 294: 11-15. https://doi.org/10.1016/0014-2999(95)00505-6
  35. Schuldiner, S. and E. Padan. 1992. $Na^{+}$ transport systems in prokaryotes, pp. 25-51. In E. P. Bakker (ed.). Alkali Cation Transport System in Prokaryotes. CRC Press, Boca Raton, FL.
  36. Shijuku, T., T. Yamashino, H. Ohashi, H. Saito, T. Kakegawa, M. Ohta, and H. Kobayashi. 2002. Expression of chaA, a sodium ion extrusion system of Escherichia coli, is regulated by osmolarity and pH. Biochim. Biophys. Acta 1556: 142-148. https://doi.org/10.1016/S0005-2728(02)00345-6
  37. Song, J. Y., Y. J. Kim, Y.-S. Hong, and Y. K. Chang. 2008. Enhancement of geldanamycin production by pH shock in batch culture of Streptomyces hygroscopicus subsp. duamyceticus. J. Microbiol. Biotechnol. 18: 897-900.
  38. Verkhovskaya, M. L., B. Barquera, M. I. Verhovsky, and M. Wikström. 1998. The $Na^{+}$ and $K^{+}$ transport deficiency of an E. coli mutant lacking the NhaA and NhaB proteins is apparent and caused by impaired osmoregulation. FEBS Lett. 439: 271-274 https://doi.org/10.1016/S0014-5793(98)01380-5
  39. Waditee, R., T. Hibino, T. Nakamura, A. Incharoensakdi, and T. Takabe. 2002. Overexpression of a $Na^{+}/H^{+}$ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Proc. Natl. Acad. Sci. USA 99: 4109-4114. https://doi.org/10.1073/pnas.052576899
  40. Wu, L., Z. Fan, L. Guo, Y. Li, Z.-L. Chen, and L. J. Qu. 2005. Over-expression of the bacterial nhaA gene in rice enhances salt and drought tolerance. Plant Sci. 168: 297-302. https://doi.org/10.1016/j.plantsci.2004.05.033
  41. Yoshinaka, T., H. Takasu, R. Tomizawa, S. Kosono, and T. Kudo. 2003. A shaE deletion mutant showed lower Na+ sensitivity compared to other deletion mutants in the Bacillus subtilis sodium/hydrogen antiporter (Sha) system. J. Biosci. Bioeng. 95: 306-309. https://doi.org/10.1016/S1389-1723(03)80035-X
  42. Zhao, J., N.-H. Cheng, C. M. Motes, E. B. Blancaflor, M. Moor, N. Gonzales, et al. 2003. AtCHX13 is a plasma membrane $K^{+}$ transporter. Plant Physiol. 148: 796-807.