References
-
Apse, M. P., G. S. Aharon, W. A. Snedden, and E. Blumward. 1999. Salt tolerance conferred by overexpression of a vacuolar
$Na^{+}/H^{+}$ antiporter in Arabidopsis. Science 285: 1256-1258. https://doi.org/10.1126/science.285.5431.1256 -
Bakker, E. P., I. R. Booth, U. Dinnbier, W. Epstein, and A. Gajewsak. 1987. Evidence for multiple
$K^{+}$ export system in Escherichia coli. J. Bacteriol. 169: 3743-3749. https://doi.org/10.1128/jb.169.8.3743-3749.1987 - Bently, S. D., K. F. Chater, A.-M. Cerdeno-Tarraga, G. L. Chaliis, N. R. Thomson, K. D. James, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147. https://doi.org/10.1038/417141a
- Bierman, M., R. Logan, K. O'Brien, E. T. Seno, R. N. Rao, and B. E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: 43-49. https://doi.org/10.1016/0378-1119(92)90627-2
- Breed, R. and W. D. Dotterrer. 1916. The number of colonies allowable on satisfactory agar plates. J. Bacteriol. 1: 321-331.
-
Brini, F., M. Hanin, I. Mezghani, G. A. Bekowitz, and K. Masmoudi. 2007. Overexpression of wheat
$Na^{+}/H^{+}$ antiporter TNHX1 and$H^{+}$ -pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J. Exper. Bot. 58: 301-308. - Bystrykh, L. V., M. A. Fernandez-Moreno, J. K. Herrema, F. Malpartida, D. A. Hopwood, and L. Dijkhuizen. 1996. Production of actinorhodin-related "blue pigments" by Streptomyces coelicolor A3(2). J. Bacteriol. 178: 2238-2244. https://doi.org/10.1128/jb.178.8.2238-2244.1996
-
Cagnac, O., M. Leterrir, M. Yeager, and E. Bumwald. 2007. Identification and characterization of Vnx1p, a novel type of vacuolar monovalent cation/
$H^{+}$ antiporter of Saccharomyces cerevisiae. J. Biol. Chem. 282: 24284-24293. https://doi.org/10.1074/jbc.M703116200 -
Cheng, J., A. A. Guffanti, and T. A. Krulwich. 1994. The chromosomal tetracycline resistance locus of Bacillus subtilis encodes a
$Na^{+}/H^{+}$ antiporter that is physiologically important at elevated pH. J. Biol. Chem. 269: 27365-27371. - Clyne, M., A. Labigne, and B. Drumm. 1995. Helicobacter pylori requires an acidic environment to survive in the presence of urea. Infect. Immun. 63: 1669-1673.
- Doull, J. C., S. Y. Ayer, A. K. Singh, and P. Thibault. 1993. Production of a novel polyketide antibiotic, jadomycin B, by Streptomyces venezuelae following heat shock. J. Antibiot. 44: 869-871.
- Flett, F. V., V. Mersenias, and C. P. Smith. 1998. High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol. Lett. 155: 223-229.
- Gaxiola, R. A., R. Rao, A. Sherman, P. Grisafi, S. L. Alper, and G. R. Fink. 1999. The Arabidopsis thaliana proton transporter, AtNhx and Avp1, can function in cation detoxification in yeast. Proc. Natl. Acad. Sci. USA 96: 1480-1485. https://doi.org/10.1073/pnas.96.4.1480
-
Goldberg, B. G., T. Arbel, J. Chen, R. Karpel, G. A. Mackie, S. Schuldiner, and E. Padan. 1987. Characterization of a
$Na^{+}/H^{+}$ antiporter gene of Escherichia coli. Proc. Natl. Acad. Sci. USA 84: 2615-2619. https://doi.org/10.1073/pnas.84.9.2615 -
Guffanti, A. A., D. E. Cohen, H. R. Kaback, and T. A. Krulwich. 1981. Relationship between the
$Na^{+}/H^{+}$ antiporter and$Na^{+}$ /substrate symport in Bacillus alcalophilus. Proc. Natl. Acad. Sci. USA 78: 1481-1484. https://doi.org/10.1073/pnas.78.3.1481 -
Hallam, T. J. and A. H. Tashjian. 1987. Thyrotropin-releasing hormone activates
$Na^{+}/H^{+}$ exchange in rat pituitary cells. J. Biochem. 242: 411-416. https://doi.org/10.1042/bj2420411 - Hayes, A., G. Hobbs, C. P. Smith, S. G. Oliver, and P. R. Butler. 1997. Environmental signals triggering methylenomycin production by Streptomyces coelicolor A(3)2. J. Bacteriol. 179: 5511-5515. https://doi.org/10.1128/jb.179.17.5511-5515.1997
-
Katiyar-Agarwal, S., J. Zhu, K. Kim, M. Agarwal, X. Fu, A. Huang, and J.-K. Zhu. 2006. The plasma membrane
$Na^{+}/H^{+}$ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc. Natl. Acad. Sci. USA 103: 18816-18821. https://doi.org/10.1073/pnas.0604711103 - Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics, pp. 161-206. The John Innes Foundation, Norwich, UK.
- Killham, K. and M. K. Firesone. 1984. Salt stress control of intracellular solutes in Streptomyces indigenous to saline soils. Appl. Environ. Microbiol. 47: 301-306.
- Kim, Y. J. 2007. Gene-expression analyses of acidic pH shock effects on actinorhodin production in Streptomyces coelicolor A3(2). Ph.D. Thesis, KAIST, Daejeon, Korea.
- Kim, C. J., Y. K. Chang, and G.-T. Chun. 2000. Enhancement of kasugamycin production by pH shock in batch cultures of Streptomyces kasugaensis. Biotechnol. Prog. 16: 548-552. https://doi.org/10.1021/bp000038f
- Kim, Y. J., M. H. Moon, J. S. Lee, S. K. Hong, and Y. K. Chang. 2011. Roles of putative sodium-hydrogen antiporter (SHA) genes in S. coelicolor A3(2) culture with pH variation. J. Microbiol. Biotechnol. 21: 979-987. https://doi.org/10.4014/jmb.1105.05003
- Kim, Y. J., J. Y. Song, M. H. Moon, C. P. Smith, S. K. Hong, and Y. K. Chang. 2007. pH shock induces overexpression of regulatory and biosynthetic genes for actinorhodin production in Streptomyces coelicolor A3(2). Appl. Microbiol. Biotechnol. 76: 1119-1130. https://doi.org/10.1007/s00253-007-1083-9
-
Kosono, S., Y. Ohashi, F. Kawamura, M. Kitada, and T. Kudo. 2000. Function of a principal
$Na^{+}/H^{+}$ antiporter, ShaA, is required for initiation of sporulation in Bacillus subtilis. J. Bacteriol. 182: 898-904. https://doi.org/10.1128/JB.182.4.898-904.2000 - Krishnamurth, P., M. Parlow, J. B. Zitzer, N. B. Vakil, H. L. Mobley, M. Levy, et al. 1998. Helicobacter pylori containing only cytoplasmic urease is susceptible to acid. Infect. Immun. 66: 5060-5066.
-
Liew, C. W., R. M. Illias, N. M. Mahadi, and N. Najimudin. 2007. Expression of the
$Na^{+}/H^{+}$ antiporter gene (g1-nhaC) of alkaliphilic Bacillus sp. G1 in Escherichia coli. FEMS Microbiol. Lett. 276: 114-122. https://doi.org/10.1111/j.1574-6968.2007.00925.x - Ohyama, T., R. Imaizumi, K. Igarashi, and H. Kobayashi. 1992. Escherichia coli is able to grow with negligible sodium ion extrusion activity at alkaline pH. J. Bacteriol. 174: 7743-7749. https://doi.org/10.1128/jb.174.23.7743-7749.1992
-
Padan, E. and S. Schuldiner. 1993.
$Na^{+}/H^{+}$ antiporters, molecular devices that couple the$Na^{+}$ and$H^{+}$ circulation in cells. J. Bioenerg. Biomembr. 25: 647-669. -
Pinner, E., Y. Kolter, E. Padan, and S. Schuldiner. 1993. Physiological role of nhaB, a specific
$Na^{+}/H^{+}$ antiporter in Escherichia coli. J. Biol. Chem. 268: 1729-1734. -
Padan, E. and S. Schuldiner. 1994. Molecular physiology of
$Na^{+}/H^{+}$ antiporters, key transporters in circulation of$Na^{+}$ and$H^{+}$ in cells. Biochim. Biophys. Acta 1185: 129-151. https://doi.org/10.1016/0005-2728(94)90204-6 -
Padan, E., M. Venture, Y. Gerchman, and N. Dover. 2001.
$Na^{+}/H^{+}$ antiporters. Biochim. Biophys. Acta 1505: 144-157. https://doi.org/10.1016/S0005-2728(00)00284-X -
Rausch, T., M. Kirsch, R. Low, A. Lehr, R. Viereck, and A. Zhigang. 1996. Salt stress responses of higher plants: The role of proton pump and
$Na^{+}/H^{+}$ antiporters J. Plant Physiol. 148: 425-433. https://doi.org/10.1016/S0176-1617(96)80275-6 -
Renzo, G. D., S. Amoroso, A. Bassi, A. Fatatis, M. Cataldi, A. M. Colao, et al. 1995. Role of the
$Na^{+}-Ca^{2+}$ and$Na^{+}/H^{+}$ antiporters in prolactin release from anterior pituitary cells in primary culture. Euro. J. Phamacol. 294: 11-15. https://doi.org/10.1016/0014-2999(95)00505-6 -
Schuldiner, S. and E. Padan. 1992.
$Na^{+}$ transport systems in prokaryotes, pp. 25-51. In E. P. Bakker (ed.). Alkali Cation Transport System in Prokaryotes. CRC Press, Boca Raton, FL. - Shijuku, T., T. Yamashino, H. Ohashi, H. Saito, T. Kakegawa, M. Ohta, and H. Kobayashi. 2002. Expression of chaA, a sodium ion extrusion system of Escherichia coli, is regulated by osmolarity and pH. Biochim. Biophys. Acta 1556: 142-148. https://doi.org/10.1016/S0005-2728(02)00345-6
- Song, J. Y., Y. J. Kim, Y.-S. Hong, and Y. K. Chang. 2008. Enhancement of geldanamycin production by pH shock in batch culture of Streptomyces hygroscopicus subsp. duamyceticus. J. Microbiol. Biotechnol. 18: 897-900.
-
Verkhovskaya, M. L., B. Barquera, M. I. Verhovsky, and M. Wikström. 1998. The
$Na^{+}$ and$K^{+}$ transport deficiency of an E. coli mutant lacking the NhaA and NhaB proteins is apparent and caused by impaired osmoregulation. FEBS Lett. 439: 271-274 https://doi.org/10.1016/S0014-5793(98)01380-5 -
Waditee, R., T. Hibino, T. Nakamura, A. Incharoensakdi, and T. Takabe. 2002. Overexpression of a
$Na^{+}/H^{+}$ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Proc. Natl. Acad. Sci. USA 99: 4109-4114. https://doi.org/10.1073/pnas.052576899 - Wu, L., Z. Fan, L. Guo, Y. Li, Z.-L. Chen, and L. J. Qu. 2005. Over-expression of the bacterial nhaA gene in rice enhances salt and drought tolerance. Plant Sci. 168: 297-302. https://doi.org/10.1016/j.plantsci.2004.05.033
- Yoshinaka, T., H. Takasu, R. Tomizawa, S. Kosono, and T. Kudo. 2003. A shaE deletion mutant showed lower Na+ sensitivity compared to other deletion mutants in the Bacillus subtilis sodium/hydrogen antiporter (Sha) system. J. Biosci. Bioeng. 95: 306-309. https://doi.org/10.1016/S1389-1723(03)80035-X
-
Zhao, J., N.-H. Cheng, C. M. Motes, E. B. Blancaflor, M. Moor, N. Gonzales, et al. 2003. AtCHX13 is a plasma membrane
$K^{+}$ transporter. Plant Physiol. 148: 796-807.