DOI QR코드

DOI QR Code

Diversity and Distribution of Methanogenic Archaea in an Anaerobic Baffled Reactor (ABR) Treating Sugar Refinery Wastewater

  • Li, Jianzheng (State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology) ;
  • Zhang, Liguo (State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology) ;
  • Ban, Qiaoying (State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology) ;
  • Jha, Ajay Kumar (State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology) ;
  • Xu, Yiping (State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology)
  • Received : 2012.04.20
  • Accepted : 2012.09.27
  • Published : 2013.02.28

Abstract

The diversity and distribution of methanogenic archaea in a four-compartment anaerobic baffled reactor (ABR) treating sugar refinery wastewater were investigated by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). At an organic loading rate of 5.33 kg $COD/m^3{\cdot}day$, the ABR could perform steadily with the mean chemical oxygen demand (COD) removal of 94.8% and the specific $CH_4$ yield of 0.21 l/g $COD_{removed}$. The $CH_4$ content in the biogas was increased along the compartments, whereas the percentage of $H_2$ was decreased, indicating the distribution characteristics of the methanogens occurred longitudinally down the ABR. A high phylogenetic and ecological diversity of methanogens was found in the ABR, and all the detected methanogens were classified into six groups, including Methanomicrobiales, Methanosarcinales, Methanobacteriales, Crenarchaeota, Arc I, and Unidentified. Among the methanogenic population, the acid-tolerant hydrogenotrophic methanogens including Methanoregula and Methanosphaerula dominated the first two compartments. In the last two compartments, the dominant methanogenic population was Methanosaeta, which was the major acetate oxidizer under methanogenic conditions and could promote the formation of granular sludge. The distribution of the hydrogenotrophic (acid-tolerant) and acetotrophic methanogens in sequence along the compartments allowed the ABR to perform more efficiently and steadily.

Keywords

References

  1. Angenent, L. T., K. Karim, M. H. Al-Dahhan, B. A. Wrenn, and R. Domiguez-Espinosa. 2004. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 22: 477-485. https://doi.org/10.1016/j.tibtech.2004.07.001
  2. APHA. 1995. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington.
  3. Ariesyady, H. D., T. Ito, and S. Okabe. 2007. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge. Water Res. 41: 1554-1568. https://doi.org/10.1016/j.watres.2006.12.036
  4. Barber, W. P. and D. C. Stuckey. 1999. The use of the anaerobic baffled reactor (ABR) for wastewater treatment: A review. Water Res. 33: 1559-1578. https://doi.org/10.1016/S0043-1354(98)00371-6
  5. Bassam, B. J., G. Caetano-Anollés, and P. M. Gresshoff. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83. https://doi.org/10.1016/0003-2697(91)90120-I
  6. Brauer, S. L., H. Cadillo-Quiroz, E. Yashiro, J. B. Yavitt, and S. H. Zinder. 2006. Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442: 192-194. https://doi.org/10.1038/nature04810
  7. Cadillo-Quiroz, H., J. B. Yavitt, and S. H. Zinder. 2009. Methanosphaerula palustris gen nov., sp. nov., a hydrogenotrophic methanogen isolated from a minerotrophic fen peatland. Int. J. Syst. Evol. Microbiol. 59: 928-935. https://doi.org/10.1099/ijs.0.006890-0
  8. Casamayor, E. O., R. Massana, S. Benlloch, L. Øvreås, B. Díez, V. J. Goddard, et al. 2002. Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ. Microbiol. 4: 338-348. https://doi.org/10.1046/j.1462-2920.2002.00297.x
  9. Casserly, C. and L. Erijman. 2003. Molecular monitoring of microbial diversity in an UASB reactor. Int. Biodeter. Biodegrad. 52: 7-12. https://doi.org/10.1016/S0964-8305(02)00094-X
  10. Chae, K. J., A. Jang, S. K. Yim, and I. S. Kim. 2008. The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour. Technol. 99: 1-6. https://doi.org/10.1016/j.biortech.2006.11.063
  11. Chouari, R., P. D. Le, P. Daegelen, P. Ginestet, J. Weissenbach, and A. Sghir. 2005. Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ. Microbiol. 7: 1104-1115. https://doi.org/10.1111/j.1462-2920.2005.00795.x
  12. Collins, G., L. O'Connor, T. Mahony, A. Gieseke, D. de Beer, and V. O'Flaherty. 2005. Distribution, localization, and phylogeny of abundant populations of Crenarchaeota in anaerobic granular sludge. Appl. Environ. Microbiol. 71: 7523-7527. https://doi.org/10.1128/AEM.71.11.7523-7527.2005
  13. Demirel, B. and P. Scherer. 2008. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: A review. Rev. Environ. Sci. Biotechnol. 7: 173-190. https://doi.org/10.1007/s11157-008-9131-1
  14. Diaz, E. E., A. J. M. Stams, R. Amils, and J. L. Sanz. 2006. Phenotypic properties and microbial diversity of methanogenic granules from a full-scale upflow anaerobic sludge bed reactor treating brewery wastewater. Appl. Environ. Microbiol. 72: 4942-4949. https://doi.org/10.1128/AEM.02985-05
  15. Iino, T., K. Mori, and K. Suzuki. 2010. Methanospirillum lacunae sp. nov., a methane-producing archaeon isolated from a puddly soil, and emended descriptions of the genus Methanospirillum and Methanospirillum hungatei. Int. J. Syst. Evol. Microbiol. 60: 2563-2566. https://doi.org/10.1099/ijs.0.020131-0
  16. Imachi, H., S. Sakai, Y. Sekiguchi, S. Hanada, Y. Kamagata, A. Ohashi, and H. Harada. 2008. Methanolinea tarda gen. nov., sp. nov., a methane-producing archaeon isolated from a methanogenic digester sludge. Int. J. Syst. Evol. Microbiol. 58: 294-301. https://doi.org/10.1099/ijs.0.65394-0
  17. Jha, A. K., J. Li, L. Nies, and L. Zhang. 2011. Research advances in dry anaerobic digestion process of solid organic wastes. Afr. J. Biotechnol. 10: 14242-14253. https://doi.org/10.5897/AJB11.1277
  18. Ji, G. D., T. H. Sun, J. R. Ni, and J. J. Tong. 2009. Anaerobic baffled reactor (ABR) for treating heavy oil produced water with high concentrations of salt and poor nutrient. Bioresour. Technol. 100: 1108-1114. https://doi.org/10.1016/j.biortech.2008.08.015
  19. Keyser, M., R. C. Whtthuhn, C. Lamprecht, M. P. A. Coetzee, and T. J. Britz. 2006. PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules. Syst. Appl. Microbiol. 29: 77-84. https://doi.org/10.1016/j.syapm.2005.06.003
  20. Lay, J. J., Y. Y. Li, T. Noike, J. Endo, and S. Ishimoto. 1997. Analysis of environmental factors affecting methane production from high-solids organic waste. Water Sci. Technol. 36: 493-500 https://doi.org/10.1016/S0273-1223(97)00560-X
  21. Li, J., B. Li, G. Zhu, N. Ren, L. Bo, and J. He. 2007. Hydrogen production from diluted molasses by anaerobic hydrogen producing bacteria in an anaerobic baffled reactor (ABR). Int. J. Hydrogen Energy 32: 3274-3283. https://doi.org/10.1016/j.ijhydene.2007.04.023
  22. Li, J., G. Zheng, J. He, S. Chang, and Z. Qin. 2009. Hydrogenproducing capability of anaerobic activated sludge in three types of fermentation in continuous stirred-tank reactor. Biotechnol. Adv. 27: 573-577. https://doi.org/10.1016/j.biotechadv.2009.04.007
  23. Liu, Y. and W. B. Whitman. 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. NY Acad. Sci. 1125: 171-189. https://doi.org/10.1196/annals.1419.019
  24. Ma, K., X. Liu, and X. Dong. 2005. Methanobacterium beijingense sp. nov., a novel methanogen isolated from anaerobic digesters. Int. J. Syst. Evol. Microbiol. 55: 325-329. https://doi.org/10.1099/ijs.0.63254-0
  25. Maestrojuan, G. M. and D. R. Boone. 1991. Characterization of Methanosarcina barki MST and 227 Methanosarcina mazei S-6T and Methanosarcina vacuolata Z-761T. Int. J. Syst. Bacteriol. 41: 267-274. https://doi.org/10.1099/00207713-41-2-267
  26. Mori, K., T. Iino, K. Suzuki, K. Yamaguchi, and Y. Kamagata. 2012. Aceticlastic and NaCl-requiring methanogen "Methanosaeta pelagica" sp. nov., isolated from marine tidal flat sediment. Appl. Environ. Microbiol. 78: 3416-3423. https://doi.org/10.1128/AEM.07484-11
  27. Mosey, F. E. and X. A. Fernandes. 1989. Patterns of hydrogen in biogas from the anaerobic digestion of milk-sugars. Water Sci. Technol. 21: 187-196.
  28. Plumb, J. J., J. Bell, and D. C. Stuckey. 2001. Microbial populations associated with treatment of an industrial dye effluent in an anaerobic baffled reactor. Appl. Environ. Microbiol. 67: 3226-3235. https://doi.org/10.1128/AEM.67.7.3226-3235.2001
  29. Riviere, D., V. Desvignes, E. Pelletier, S. Chaussonnerie, S. Guermazi, J. Weissenbach, et al. 2009. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J. 3: 700-714. https://doi.org/10.1038/ismej.2009.2
  30. Roest, K., H. G. Heilig, H. Smidt, W. M. de Vos, A. J. M. Stams, and A. D. L. Akkermans. 2005. Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater. Syst. Appl. Microbiol. 28: 175-185. https://doi.org/10.1016/j.syapm.2004.10.006
  31. Savant, D. V., Y. S. Shouche, S. Prakash, and D. R. Ranade. 2002. Methanobrevibacter acididurans sp. nov., a novel methanogen from a sour anaerobic digester. Int. J. Syst. Evol. Microbiol. 52: 1081-1087. https://doi.org/10.1099/ijs.0.01903-0
  32. Savant, D. V. and D. R. Ranade. 2004. Application of Methanobrevibacter acididurans in anaerobic digestion. Water Sci. Technol. 50: 109-114.
  33. Sekiguchi, Y., Y. Kamagata, and H. Harada. 2001. Recent advances in methane fermentation technology. Curr. Opin. Biotechnol. 12: 277-282. https://doi.org/10.1016/S0958-1669(00)00210-X
  34. Takashi, N., T. Terada, K. Kikuchi, A. Iguchi, M. Ikeda, T. Yamauchi, et al. 2009. Comparative analysis of bacterial and archaeal communities in methanogenic sludge granules from upflow anaerobic sludge blanket reactors treating various foodprocessing, high-strength organic wastewaters. Microbes Environ. 24: 89-96.
  35. Uyanik, S., P. J. Sallis, and G. K. Anderson. 2002. The effect of polymer addition on granulation in an anaerobic baffled reactor (ABR). Part I: Process performance. Water Res. 36: 933-943. https://doi.org/10.1016/S0043-1354(01)00315-3
  36. Wang, J., Y. Huang, and X. Zhao. 2004. Performance and characteristics of an anaerobic baffled reactor. Bioresour. Technol. 93: 205-208. https://doi.org/10.1016/j.biortech.2003.06.004
  37. Yadvika, S., T. R. Sreekrishnan, S. Kohli, and R. Vineet. 2004. Enhancement of biogas production from solid substrates using different techniques - a review. Bioresour. Technol. 95: 1-10. https://doi.org/10.1016/j.biortech.2004.02.010
  38. Yashiro, Y., S. Sakai, M. Ehara, M. Miyazaki, T. Yamaguchi, and H. Imachi. 2011. Methanoregula formicica sp. nov., a methane-producing archaeon isolated from methanogenic sludge. Int. J. Syst. Evol. Microbiol. 61: 755-760.
  39. Zhang, D., J. Li, P. Guo, P. Li, Y. Suo, X. Wang, and Z. Cui. 2011. Dynamic transition of microbial communities in response to acidification in fixed-bed anaerobic baffled reactors (FABR) of two different flow directions. Bioresour. Technol. 102: 4703- 4711. https://doi.org/10.1016/j.biortech.2011.01.044
  40. Zhang, J., Y. Wei, W. Xiao, Z. Zhou, and X. Yan. 2011. Performance and spatial community succession of an anaerobic baffled reactor treating acetone-butanol-ethanol fermentation wastewater. Bioresour. Technol. 102: 7407-7414. https://doi.org/10.1016/j.biortech.2011.05.035
  41. Zhang, Y., E. M. Z. Canas, Z. Zhu, J. L. Linville, S. Chen, and Q. He. 2011. Robustness of archaeal populations in anaerobic co-digestion of dairy and poultry wastes. Bioresour. Technol. 102: 779-785. https://doi.org/10.1016/j.biortech.2010.08.104
  42. Zheng, D. and L. Raskin. 2000. Quantification of Methanosaeta species in anaerobic bioreactors using genus- and speciesspecific hybridization probes. Microb. Ecol. 39: 246-262.

Cited by

  1. Quantitative Analysis of Previously Identified Propionate-Oxidizing Bacteria and Methanogens at Different Temperatures in an UASB Reactor Containing Propionate as a Sole Carbon Source vol.171, pp.8, 2013, https://doi.org/10.1007/s12010-013-0465-y
  2. 혼합폐수의 효율적인 처리를 위한 생물학적 처리공정 내의 미생물 군집 특성 분석 vol.28, pp.3, 2013, https://doi.org/10.7841/ksbbj.2013.28.3.157
  3. Eubacteria and archaea communities in seven mesophile anaerobic digester plants in Germany vol.8, pp.None, 2013, https://doi.org/10.1186/s13068-015-0271-6