DOI QR코드

DOI QR Code

Lactobacillus brevis KB290 Enhances IL-8 Secretion by Vibrio parahaemolyticus-Infected Caco-2 Cells

  • Yakabe, Takafumi (Nature and Wellness Research Department, Research Institute, Kagome Company, Ltd.) ;
  • Shimohata, Takaaki (Department of Preventive Environment and Nutrition, Institute of Health Biosciences, The University of Tokushima Graduate School) ;
  • Takahashi, Akira (Department of Preventive Environment and Nutrition, Institute of Health Biosciences, The University of Tokushima Graduate School)
  • Received : 2012.07.13
  • Accepted : 2012.08.19
  • Published : 2013.01.28

Abstract

Vibrio parahaemolyticus in uncooked seafood causes acute gastroenteritis. The microorganism has two sets of type III secretion systems and two hemolysins. When it injects its effector proteins into a host cell via type III secretion system 1, one of the type III secretion systems induces secretion of interleukin (IL)-8, a proinflammatory chemokine, through the phosphorylation of ERK 1/2 and p38 MAPK. Although probiotics have beneficial effects on hosts and can help control some infectious diseases, there is little research on the efficacy of probiotics in V. parahaemolyticus infection. Here we pretreated V. parahaemolyticus-infected human intestinal epithelial cells with heat-killed Lactobacillus brevis KB290, a probiotic isolated from fermented vegetables (traditional Japanese pickles) and utilized as an ingredient of beverages and supplementary foods, and demonstrated its efficacy in enhancing IL-8 secretion from V. parahaemolyticus-infected cells. Among the three heat-killed lactic acid bacterial strains we tested, L. brevis KB290 induced the highest level of IL-8 secretions in the infected cells. Relative to control cells (Caco-2 cells pretreated with PBS), V. parahaemolyticus-infected Caco-2 cells pretreated with heat-killed L. brevis KB290 secreted IL-8 earlier, although concentrations were similar 450min after infection. Heat-killed L. brevis KB290 pretreatment also induced earlier ERK 1/2 phosphorylation, greater p38 MAPK phosphorylation, and enhanced IL-8 mRNA expression. Heat-killed L. brevis KB290 accelerated IL-8 secretion, a host cell immune response, in V. parahaemolyticus-infected cells. We consider this to be beneficial because IL-8 plays an important defensive role against infection, and would contribute to the repair of injured epithelial cells.

Keywords

References

  1. Corr, S. C., C. G. Gahan, and C. Hill. 2007. Impact of selected Lactobacillus and Bifidobacterium species on Listeria monocytogenes infection and the mucosal immune response. FEMS Immunol. Med. Microbiol. 50: 380-388. https://doi.org/10.1111/j.1574-695X.2007.00264.x
  2. Dai, C., D. H. Zhao, and M. Jiang. 2012. VSL#3 probiotics regulate the intestinal epithelial barrier in vivo and in vitro via the p38 and ERK signaling pathways. Int. J. Mol. Med. 29: 202-208.
  3. Edwards, L. A., M. Bajaj-Elliott, N. J. Klein, S. H. Murch, and A. D. Phillips. 2011. Bacterial-epithelial contact is a key determinant of host innate immune responses to enteropathogenic and enteroaggregative Escherichia coli. PLoS One 6: e27030. https://doi.org/10.1371/journal.pone.0027030
  4. FAO/WHO. 2011. Risk assessment of Vibrio parahaemolyticus in seafood: Interpretative summary and technical report. In Microbiological Risk Assessment Series. No. 16. Rome.
  5. FAO/WHO Codex Alimentarius. 2010. Guidelines on the application of general principles of food hygiene to the control of pathogenic Vibrio species in seafood. CAC/GL 73-2010.
  6. Floch, M. H., W. A. Walker, K. Madsen, M. E. Sanders, G. T. Macfarlane, H. J. Flint, et al. 2011. Recommendations for probiotic use - 2011 update. J. Clin. Gastroenterol 45: S168-S171. https://doi.org/10.1097/MCG.0b013e318230928b
  7. Fujino, T., Y. Okuno, D. Nakada, A. Aoyama, K. Fukai, T. Mukai, and T. Ueho. 1953. On the bacteriological examination of shirasu food poisoning. Med. J. Osaka Univ. 4: 299-304.
  8. Fukao, M., H. Tomita, T. Yakabe, T. Nomura, Y. Ike, and N. Yajima. 2009. Assessment of antibiotic resistance in probiotic strain Lactobacillus brevis KB290. J. Food Prot. 72: 1923-1929.
  9. Ghadimi, D., M. Vrese, K. J. Heller, and J. Schrezenmeir. 2010. Effect of natural commensal-origin DNA on toll-like receptor 9 (TLR9) signaling cascade, chemokine IL-8 expression, and barrier integritiy of polarized intestinal epithelial cells. Inflamm. Bowel Dis. 16: 410-427. https://doi.org/10.1002/ibd.21057
  10. Godaly, G., G. Bergsten, L. Hang, H. Fischer, B. Frendeus, A. C. Lundstedt, et al. 2001. Neutrophil recruitment, chemokine receptors, and resistance to mucosal infection. J. Leukoc. Biol. 69: 899-906.
  11. Harada, A., N. Sekido, T. Akahoshi, T. Wada, N. Mukaida, and K. Matsushima. 1994. Essential involvement of interleukin-8 (IL-8) in acute inflammation. J. Leukoc. Biol. 56: 559-564.
  12. Kishi, A., K. Uno, Y. Matsubara, C. Okuda, and T. Kishida. 1996. Effect of the oral administration of Lactobacillus brevis subsp. coagulans on interferon-alpha producing capacity in humans. J. Am. Coll. Nutr. 15: 408-412. https://doi.org/10.1080/07315724.1996.10718617
  13. Kline, K. A., S. Falker, S. Dahlberg, S. Normark, and B. Henriques-Normark. 2009. Bacterial adhesins in host-microbe interactions. Cell Host Microbe 5: 580-592. https://doi.org/10.1016/j.chom.2009.05.011
  14. Krachler, A. M., H. Ham, and K. Orth. 2011. Outer membrane adhesion factor multivalent adhesion molecule 7 initiates host cell binding during infection by Gram-negative pathogens. Proc. Natl. Acad. Sci. USA 108: 11614-11619. https://doi.org/10.1073/pnas.1102360108
  15. Kucharzik, T., J. T. Hudson 3rd, A. Lugering, J. A. Abbas, M. Bettini, J. G. Lake, et al. 2005. Acute induction of human IL-8 production by intestinal epithelium triggers neutrophil infiltration without mucosal injury. Gut 54: 1565-1572. https://doi.org/10.1136/gut.2004.061168
  16. Lee, Y. K., K. Y. Puong, A. C. Ouwehand, and S. Salminen. 2003. Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli. J. Med. Microbiol. 52: 925-930 https://doi.org/10.1099/jmm.0.05009-0
  17. Makino, K., K. Oshima, K. Kurokawa, K. Yokoyama, T. Uda, K. Tagomori, et al. 2003. Genome sequence of Vibrio parahaemolyticus: A pathogenic mechanism distinct from that of V. cholerae. Lancet 361: 743-749. https://doi.org/10.1016/S0140-6736(03)12659-1
  18. Mumy, K. L. and B. A. McCormick. 2009. The role of neutrophils in the event of intestinal inflammation. Curr. Opin. Pharmacol. 9: 697-701. https://doi.org/10.1016/j.coph.2009.10.004
  19. Nair, G. B., T. Ramamurthy, S. K. Bhattacharya, B. Dutta, Y. Takeda, and D. A. Sack. 2007. Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin. Microbiol. Rev. 20: 39-48. https://doi.org/10.1128/CMR.00025-06
  20. Nandakumar, N. S., S. Pugazhendhi, and B. S. Ramakrishna. 2009. Effects of enteropathogenic bacteria & lactobacilli on chemokine secretion & Toll-like receptor gene expression in two human colonic epithelial cell lines. Indian J. Med. Res. 130: 170-178.
  21. Nobuta, Y., T. Inoue, S. Suzuki, C. Arakawa, T. Yakabe, M. Ogawa, and N. Yajima. 2009. The efficacy and the safety of Lactobacillus brevis KB290 as a human probiotics. Int. J. Probiotics Prebiotics 4: 263.
  22. Ohland, C. L. and W. K. Macnaughton. 2010. Probiotic bacteria and intestinal epithelial barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 298: G807-G819. https://doi.org/10.1152/ajpgi.00243.2009
  23. Park, K. S., T. Ono, M. Rokuda, M. H. Jang, K. Okada, T. Iida, and T. Honda. 2004. Functional characterization of two type III secretion systems of Vibrio parahaemolyticus. Infect. Immun. 72: 6659-6665. https://doi.org/10.1128/IAI.72.11.6659-6665.2004
  24. Putaala, H., R. Barrangou, G. J. Leyer, A. C. Ouwehand, E. B. Hansen, D. A. Romero, and N. Rautonen. 2010. Analysis of the human intestinal epithelial cell transcriptional response to Lactobacillus acidophilus, Lactobacillus salivarius, Bifidobacterium lactis and Escherichia coli. Benef. Microbes 1: 283-295. https://doi.org/10.3920/BM2010.0003
  25. Roselli, M., A. Finamore, M. S. Britti, and E. Mengheri. 2006. Probiotic bacteria Bifidobacterium animalis MB5 and Lactobacillus rhamnosus GG protect intestinal Caco-2 cells from the inflammation-associated response induced by enterotoxigenic Escherichia coli K88. Br. J. Nutr. 95: 1177-1184. https://doi.org/10.1079/BJN20051681
  26. Ruiz, P. A., M. Hoffmann, S. Szcesny, M. Blaut, and D. Haller. 2005. Innate mechanisms for Bifidobacterium lactis to activate transient pro-inflammatory host responses in intestinal epithelial cells after the colonization of germ-free rats. Immunology 115: 441-450. https://doi.org/10.1111/j.1365-2567.2005.02176.x
  27. Shimohata, T., M. Nakano, X. Lian, T. Shigeyama, H. Iba, A. Hamamoto, et al. 2011. Vibrio parahaemolyticus infection induces modulation of IL-8 secretion through dual pathway via VP1680 in Caco-2 cells. J. Infect. Dis. 203: 537-544. https://doi.org/10.1093/infdis/jiq070
  28. Sturm, A., D. C. Baumgart, J. H. d'Heureuse, A. Hotz, B. Wiedenmann, and A. U. Dignass. 2005. CXCL8 modulates human intestinal epithelial cells through a CXCR1 dependent pathway. Cytokine 29: 42-48.
  29. Su, Y. C. and C. Liu. 2007. Vibrio parahaemolyticus: A concern of seafood safety. Food Microbiol. 24: 549-558. https://doi.org/10.1016/j.fm.2007.01.005
  30. Tien, M. T., S. E. Girardin, B. Regnault, L. Le Bourhis, M. A. Dillies, J. Y. Coppee, et al. 2006. Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J. Immunol. 176: 1228-1237.
  31. Yakabe, T., E. L. Moore, S. Yokota, H. Sui, Y. Nobuta, M. Fukao, et al. 2009. Safety assessment of Lactobacillus brevis KB290 as a probiotic strain. Food Chem. Toxicol. 47: 2450- 2453. https://doi.org/10.1016/j.fct.2009.07.001
  32. Yakabe, T., H. Takashima, M. Kuwagata, M. Fukao, S. Kikuchi, and N. Yajima. 2011. Teratogenicity and maternal effects of Lactobacillus brevis KB290 in rats and rabbits. Food Chem. Toxicol. 49: 722-726. https://doi.org/10.1016/j.fct.2010.11.025
  33. Zanello, G., M. Berri, J. Dupont, P. Y. Sizaret, R. D'Inca, H. Salmon, and F. Meurens. 2011. Saccharomyces cerevisiae modulates immune gene expressions and inhibits ETEC-mediated ERK1/2 and p38 signaling pathways in intestinal epithelial cells. PLoS One 6: e18573. https://doi.org/10.1371/journal.pone.0018573