References
- Amaro, H. M., A. Guedes, and F. X. Malcata. 2011. Advances and perspectives in using microalgae to produce biodiesel. Appl. Energ. 88: 3402-3410. https://doi.org/10.1016/j.apenergy.2010.12.014
- APHA. 1995. Standard Methods for the Examination of Water and Wastewater, 19th Ed. APHA, Washington DC.
- Aslan, S. and I. K. Kapdan. 2006. Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 28: 64-70. https://doi.org/10.1016/j.ecoleng.2006.04.003
- Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
- Christenson, L. B. and R. C. Sims. 2012. Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol. Bioeng. 109: 1674-1684. https://doi.org/10.1002/bit.24451
- Godos, I. D., S. Blanco, P. A. Garcia-Encina, E. Becares, and R. Munoz. 2009. Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresour. Technol. 100: 4332-4339. https://doi.org/10.1016/j.biortech.2009.04.016
- Goldberg, I. K. and Z. Cohen. 2006. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67: 696-701. https://doi.org/10.1016/j.phytochem.2006.01.010
- Graham, L. E. and L. W. Wilcox. 2000. Algae. Prentice Hall, New Jersey.
- Hua, G. H., F. Chen, D. Wei, X. W. Zhang, and G. Chen. 2010. Biodiesel production by microalgal biotechnology. Appl. Energ. 87: 38-46. https://doi.org/10.1016/j.apenergy.2009.06.016
- Jeffrey, S. W., M. Sielicki, and F. T. Haxo. 1975. Chloroplast pigment patterns in dinoflagellates. J. Phycol. 11: 374-384.
- Johnson, M. B. and Z. Wen. 2010. Development of an attached microalgal growth system for biofuel production. Appl. Microbiol. Biotechnol. 85: 525-534. https://doi.org/10.1007/s00253-009-2133-2
- Kapdan, I. K. and S. Aslan. 2008. Application of the Stover- Kincannon kinetic model to nitrogen removal by Chlorella vulgaris in a continuously operated immobilized photobioreactor system. J. Chem. Technol. Biotechnol. 83: 998-1005. https://doi.org/10.1002/jctb.1905
- Lepage, G. and C. C. Roy. 1984. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J. Lipid Res. 25: 1391-1396.
- Marincas, O., P. Petrov, T. Ternes, V. Avram, and Z. Moldovan. 2005. The improvement of removal effects on organic pollutants in wastewater treatment plants (WWTP). J. Phys. Conf. Ser. 182: 12-40.
- Markou, G. and D. Georgakakis. 2011. Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review. Appl. Energ. 88: 3389-3401. https://doi.org/10.1016/j.apenergy.2010.12.042
- McGinn, P. J., K. E. Dickinson, K. C. Park, C. G. Whitney, S. P. MacQuarrie, F. J. Black, et al. 2012. Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Res. 1: 155-165. https://doi.org/10.1016/j.algal.2012.05.001
- Mulbry, W., S. Kondrad, C. Pizarro, and E. Kebede-Westhead. 2008. Treatment of dairy manure effluent using freshwater algae: Algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour. Technol. 99: 8137-8142. https://doi.org/10.1016/j.biortech.2008.03.073
- Mulbry, W., S. Kondrad, and J. Buyer. 2008. Treatment of dairy and swine manure effluents using freshwater algae: Fatty acid content and composition of algal biomass at different manure loading rates. J. Appl. Phycol. 20: 1079-1085. https://doi.org/10.1007/s10811-008-9314-8
- Oswald, W. J. 1961. Fundamental factors in stabilization pond design. Int. J. Air Water Pollut. 5: 357.
- Oswald, W. J. 2003. My sixty years in applied algology. J. Appl. Phycol. 15: 99-106. https://doi.org/10.1023/A:1023871903434
- Park, J. B. K. and R. J. Craggs. 2010. Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Sci. Technol. 61: 633-639. https://doi.org/10.2166/wst.2010.951
- Ratledge, C. and S. G. Wilkinson. 1988. An overview of microbial lipids, pp. 3-22. In C. Ratledge and S. G. Wilkinson (eds.). Microbial Lipids. Academic Press, London.
- Wijffels, R. H. and M. J. Barbosa. 2010. An outlook on microalgal biofuels. Science 329: 796-799. https://doi.org/10.1126/science.1189003
- Xin, L., H.-Y. Hu, K. Gan, and Y.-X. Sun. 2010. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour. Technol. 101: 5494-5500. https://doi.org/10.1016/j.biortech.2010.02.016
- Xu, N., X. Zhang, X. Fan, L. Han, and C. Zeng. 2001. Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta). J. Appl. Phycol. 13: 463-469. https://doi.org/10.1023/A:1012537219198
- Yang, J., M. Xu, X. Z. Zhang, Q. Hu, M. Sommerfeld, and Y. Chen. 2011. Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresour. Technol. 102: 159-165.
Cited by
- 폐수를 이용한 겨울철 경제적 미세조류 배양 시스템의 개발 vol.32, pp.1, 2013, https://doi.org/10.11626/kjeb.2014.32.1.058
- Cultivation of Chlorella protothecoides in anaerobically treated brewery wastewater for cost-effective biodiesel production vol.38, pp.3, 2015, https://doi.org/10.1007/s00449-014-1292-4
- Assessment of Biomass Productivities of <i>Chlorella vulgaris</i> and <i>Scenedesmus obliquus</i> in Defined Media and Municipal Wastewater at V vol.8, pp.2, 2013, https://doi.org/10.4236/jwarp.2016.82018
- Seasonal Assessment of Biomass and Fatty Acid Productivity by Tetraselmis sp. in the Ocean Using Semi-Permeable Membrane Photobioreactors vol.26, pp.6, 2016, https://doi.org/10.4014/jmb.1601.01031
- Treatment of second cheese whey effluents using a Choricystis‐based system with simultaneous lipid production vol.91, pp.8, 2013, https://doi.org/10.1002/jctb.4829
- Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater Chlorella vulgaris vol.38, pp.1, 2013, https://doi.org/10.1080/09593330.2016.1186227
- Development of low-cost culture media for Ankistrodesmus gracilis based on inorganic fertilizer and macrophyte vol.29, pp.n, 2013, https://doi.org/10.1590/s2179-975x3916
- Optimization of cultivation conditions for combined nutrient removal and CO2 fixation in a batch photobioreactor vol.92, pp.5, 2017, https://doi.org/10.1002/jctb.5084
- Evaluation of Pre-Chlorinated Wastewater Effluent for Microalgal Cultivation and Biodiesel Production vol.10, pp.8, 2018, https://doi.org/10.3390/w10080977
- 신규 분리된 담수미세조류 Parachlorella sp.의 지방산 생산성 향상을 위한 배지 조성 연구 vol.48, pp.3, 2013, https://doi.org/10.4014/mbl.1912.12020
- The biological performance of a novel microalgal-bacterial membrane photobioreactor: Effects of HRT and N/P ratio vol.261, pp.None, 2013, https://doi.org/10.1016/j.chemosphere.2020.128199
- Motility changes rather than EPS production shape aggregation of Chlamydomonas microsphaera in aquatic environment vol.42, pp.18, 2021, https://doi.org/10.1080/09593330.2020.1718216
- Membrane fouling in a microalgal-bacterial membrane photobioreactor: Effects of P-availability controlled by N:P ratio vol.282, pp.None, 2021, https://doi.org/10.1016/j.chemosphere.2021.131015