DOI QR코드

DOI QR Code

Penman-Monteith 모델에 의한 식물공장 내 상추(Lactuca sativa L.)의 증산량 예측

Prediction of Transpiration Rate of Lettuces (Lactuca sativa L.) in Plant Factory by Penman-Monteith Model

  • 이준우 (서울대학교 농업생명과학대학 식물생산과학부 및 농업생명과학연구원) ;
  • 엄정남 (서울대학교 농업생명과학대학 식물생산과학부 및 농업생명과학연구원) ;
  • 강우현 (서울대학교 농업생명과학대학 식물생산과학부 및 농업생명과학연구원) ;
  • 신종화 (서울대학교 농업생명과학대학 식물생산과학부 및 농업생명과학연구원) ;
  • 손정익 (서울대학교 농업생명과학대학 식물생산과학부 및 농업생명과학연구원)
  • Lee, June Woo (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Eom, Jung Nam (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Kang, Woo Hyun (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Shin, Jong Hwa (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Son, Jung Eek (Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • 투고 : 2013.06.08
  • 심사 : 2013.06.13
  • 발행 : 2013.06.30

초록

밀폐된 식물공장 환경에서 환경 조절 및 에너지 소비예측을 위해서는 환경요소들의 변화 요인을 파악해야 한다. 식물체는 광합성 과정에서 많은 양의 물을 증산을 통해 대기 중으로 방출하게 되는데, 일반적으로 식물공장의 특성상 비교적 높은 습도 유지가 필요하며, 증산은 실내 습도에 직접적인 영향을 주기 때문에 식물의 증산량에 대한 정량화가 필요하다. 본 연구에서는 식물공장 생육조건에서 4가지 품종의 상추를 재배하면서 생육기간에 따른 엽면적 변화와 증산속도를 측정하고 이를 바탕으로 Penman-Monteith 방정식을 식물공장 조건에 맞게 변형시켰다. 그리고 이러한 결과들을 토대로 식물공장에서 재배 기간 중 증산으로 인해 발생하는 수분의 양을 시뮬레이션을 통해 예측하였다. 그 결과 작물의 엽면적과 증산속도는 생육기간이 진전됨에 따라 점차 증가하는 것으로 나타났으며 엽면적과 증산량 사이는 비례관계를 나타냈다. 증산량 추정 모델식 변형은 일반적으로 다양한 환경 요인들에 의해 증산량이 결정되던 기존의 모델식들에 비해 엄밀한 환경 요소들에 대한 제어가 가능한 식물공장에서 증산량은 환경 요소들은 상수로 취급 가능하며, 작물의 엽면적지수의 변화에 대해서만 주로 결정되었다. 또한 설정된 환경 조건에서 생육기간에 따른 증산량 추정모델을 이용하여 전체 생육기간 중 작물 개체당 누적 증산량을 높은 결정계수($r^2$)로 예측할 수 있었다. 이렇게 예측된 증산량은 식물공장 환경 제어 기술 중 냉난방 부하 계산 및 관수 계획을 세우는데 활용 가능할 것이다.

In closed plant production system like plant factory, changes in environmental factors should be identified for conducting efficient environmental control as well as predicting energy consumption. Since high relative humidity (RH) is essential for crop production in the plant factory, transpiration is closely related with RH and should be quantified. In this study, four varieties of lettuces (Lactuca sativa L.) were grown in a plant factory, and the leaf areas and transpiration rates of the plants according to DAT (day after transplanting) were measured. The coefficients of the simplified Penman-Monteith equation were calibrated in order to calculate the transpiration rate in the plant factory and the total amount of transpiration during cultivation period was predicted by simulation. The following model was used: $E_d=a*(1-e^{-k*LAI})*RAD_{in}+b*LAI*VPD_d$ (at daytime) and $E_n=b*LAI*VPD_n$ (at nighttime) for estimating transpiration of the lettuce in the plant factory. Leaf area and transpiration rate increased with DAT as exponential growth. Proportional relationship was obtained between leaf area and transpiration rate. Total amounts of transpiration of lettuces grown in plant factory could be obtained by the models with high $r^2$ values. The results indicated the simplified Penman-Monteith equation could be used to predict water requirements as well as heating and cooling loads required in plant factory system.

키워드

참고문헌

  1. Baille, M., A. Baille, and J.C. Laury, 1994. A simplified model for predicting evapotranspiration rate of nine ornamental species vs. climate factors and leaf area. Sci. Hort. 59:217-232.
  2. Bakker, J.C., G.P.A. Bot, H. Challa, and N.J. Van de Braak. 1995. Greenhouse climate control. Wageningen Pers, Wageningen, The Netherlands. p. 15- 160.
  3. Boulard, T. and R. Jemaa. 1993. Greenhouse tomato crop tran-spiration model application to irrigation control. Acta Hort. 355:381-387.
  4. Carmassi, G., L. Incrocci, R. Maggini, F. Malorgio, F. Tognoni, and A. Pardossi. 2007. An aggregated model for water requirements of greenhouse tomato grown in closed rockwool culture with saline water. Agr. Water Manage. 88:73-82 https://doi.org/10.1016/j.agwat.2006.10.002
  5. De Graaf, R. and J. Van den Ende. 1981. Transpiration and evapotranspiration of the glasshouse crops. Acta Hort. 119:147-158.
  6. Jolliet, O. and B.J. Bailley. 1992. The effect of climate on tomato transpiration in greenhouse: measurements and models comparison. Agr. For. Meteorol. 58:43-63 https://doi.org/10.1016/0168-1923(92)90110-P
  7. Marcelis, L.F.M., E. Heuvelink, and J. Goudrian. 1998. Modeling biomass production and yield of horticultural crops: A review. Sci. Hort. 74:83-111. https://doi.org/10.1016/S0304-4238(98)00083-1
  8. Medrano, E., P. Lorenzo, M.C. Sanchez-Guerrero, and J.L. Montero. 2005. Evaluation and modeling of greenhouse cucumber-crop transpiration under high and low radiation conditions. Sci. Hort. 105:163-175. https://doi.org/10.1016/j.scienta.2005.01.024
  9. Motulsky, H. and A. Christopoulos. 2003. Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting. GraphPad Sofware Inc. San Diego. CA., USA.
  10. Nedefhoff, E.M. 1984. Light interception of a cucumber crop at different stages of growth. Acta Hort. 148:525-534.
  11. Nobel, P.S. and S.P. Long. 1985. Canopy structure and light interception. In: J. Coombs, D.D. Hal, S.P. Long, and J.M.O. Scurlock (ed.). Techniques in bioproductivity and photosynthesis. Pergamon Press, Oxford, UK. p. 41-49.
  12. Rosenberg, N.J., B.L. Blad, and S.B. Verma. 1983. Microclimate- The Biological Environment. 2nd ed. Wiley, New York, NY, USA. p. 495.
  13. Salisbury, F.B. and C.W. Ross. 1992. Environmental physiology: in: Plant Physiology. 4th Ed, Wadsworth Pub. Company, Belmont, CA, USA. p. 549-600.
  14. Stanghellini, C. 1987. Transpiration of greenhouse crops: an aid to climate management. PhD dissertation. Wageningen Agricultural University, Wageningen, Netherlands. p. 150.
  15. Ta, T.H., J.H. Shin, T.I. Ahn, and J.E. Son. 2011. Modeling of transpiration of paprika (Capsicum annuum L.) plans based on radiation and leaf area index in soilless culture. Hort. Environ. Biotechnol. 52:265-269. https://doi.org/10.1007/s13580-011-0216-3
  16. Ta, T.H., J.H. Shin, E.H. Noh, and J.E. Son. 2012. Transpiration, growth, and water use efficiency of paprika (Capsicum annuum L.) plans as affected by irrigation frequency. Hort. Environ. Biotechnol. 53:129-134. https://doi.org/10.1007/s13580-012-0095-2