DOI QR코드

DOI QR Code

이상기상 조건이 배추의 생육 및 세포조직에 미치는 영향

Effects of Growth and Cellular Tissue under Abnormal Climate Condition in Chinese Cabbage

  • 이상규 (국립원예특작과학원 채소과) ;
  • 최장선 (국립원예특작과학원 채소과) ;
  • 최준명 (국립원예특작과학원 채소과) ;
  • 이희주 (국립원예특작과학원 채소과) ;
  • 박수형 (국립원예특작과학원 채소과) ;
  • 도경란 (국립원예특작과학원 과수과)
  • Lee, Sang Gyu (Vegetable Research Division, National Institute of Horticultural and Herbal Sciences, RDA) ;
  • Choi, Chang Sun (Vegetable Research Division, National Institute of Horticultural and Herbal Sciences, RDA) ;
  • Choi, Jun Myung (Vegetable Research Division, National Institute of Horticultural and Herbal Sciences, RDA) ;
  • Lee, Hee Ju (Vegetable Research Division, National Institute of Horticultural and Herbal Sciences, RDA) ;
  • Park, Suhyoung (Vegetable Research Division, National Institute of Horticultural and Herbal Sciences, RDA) ;
  • Do, Kyung Ran (Fruit Research Division, National Institute of Horticultural and Herbal Sciences, RDA)
  • 투고 : 2013.03.19
  • 심사 : 2013.04.25
  • 발행 : 2013.06.30

초록

지구 온난화의 영향으로 우리나라는 지난 30년동안 평균기온이 $0.7^{\circ}C$, 겨울철에는 $1.4^{\circ}C$가 상승하였다. 이러한 온난화로 인하여 우리나라에서는 이상기상 현상이 자주 발생하여 채소작물에 피해가 발생한다. 특히 노지에서 많이 재배되고 있는 고추, 배추 및 무는 온난화로 인하여 정식시기를 점점 앞당겨 정식후 갑작스런 저온이 오면 이들 작물의 피해가 크다. 따라서 본 실험은 저온에 따른 배추의 생육특성과 엽 세포조직에 미치는 영향을 구명하고자 실시하였다. '춘광' 배추품종을 화분에 정식한 후 노지 처리구, 무가온 하우스 및 가온하우스 처리구 등 3처리를 하였다. 그 결과, 정식후 50일의 생육은 노지처리구의 초장, 엽수, 엽록소 및 엽면적이 가온 처리구에 비해서 현저하게 떨어졌고, 특히 생체중의 경우에는 가온 처리구에 비해서 노지와 무가온 하우스 처리구가 1/3 수준으로 현저하게 낮았다. 배추의 잎이 10매 정도 생육이 되었을 때 저온에 따른 배추 잎의 피해증상은 영하 $3.0^{\circ}C$ 조건에서는 배추 겉잎에 약간의 수침증상을 보였으나 회복되었다. 그러나 영하 $7.4^{\circ}C$ 조건의 배추 잎은 수침증상이 심하였으며 회복되지 못하고 황색으로 변하면서 결국 잎이 고사하였다. 피해받은 잎의 엽육세포는 영하 $3.0^{\circ}C$ 조건에서는 울타리조직과 해면조직이 약한 붕괴증상을 보였지만 어느정도 형태를 갖추고 있었는데, 영하 $7.4^{\circ}C$ 조건에서는 세포가 동결된 후 해동되는 과정에서 세포의 막구조가 파괴되어 울타리조직과 해면조직이 완전히 붕괴되었기 때문에 세포 형태를 갖추고 있지 않았다. 따라서 배추 정식후 초기 생육 단계에서 영하 $3^{\circ}C$까지는 비닐이나 부직포로 보온, 토양수분 조절, ABA 처리를 하여 동해를 예방할 수 있으나 영하 $7^{\circ}C$의 저온이 발생하면 세포가 파괴되어 회복하기 어렵기 때문에 다시 심거나 또는 다른 작물로 대체하는 것이 좋을 것으로 사료되었다.

The average annual and winter ambient air temperatures in Korea have risen by $0.7^{\circ}C$ and $1.4^{\circ}C$, respectively, during the last 30 years. Due to climate change, the occurrence of abnormal weather conditions has become more frequent, causing damage to vegetable crops grown in Korea. Hot pepper, chinese cabbage and radish, the three most popular vegetables in Korea, are produced more in the field than in the greenhouse. It has been a trend that the time for field transplanting of seedlings is getting earlier and earlier as the spring temperatures keep rising. Seedlings transplanted too early in the spring take a longer time to resume the normal growth, because they are exposed to suboptimal temperature conditions. This experiment was carried out to figure out the change of cellular tissue of chinese cabbage under the condition of low temperature to provide the information regarding the coming climatic change, on the performance of 'Chunkwang' chinese cabbage during the spring growing season. In our study, plant height, number of leaf, chlorophyll and leaf area was lower at the open field cultivation than heating house treatment after transplanting 50 days. Especially in fresh weight, compared with heating treatment, open field and not heated treatment were notably low with the 1/3 level. Of damage symptoms due to low temperature cabbage leaves about 10 sheets when $-3.0^{\circ}C$ conditions in chinese cabbage was a little bit of water soaking symptoms on the leaves. $-7.4^{\circ}C$ under increasingly severe water soaking symptoms of leaf turns yellow was dry. Microscopy results showed symptoms of $-3.0^{\circ}C$ when the mesophyll cell of palisade tissue and spongy tissue collapse, $-7.4^{\circ}C$ palisade tissue and spongy tissue was completely collapsed. The result of this study suggests that the growers should be cautioned not to transplant their chinese cabbage seedlings too early into the field, and should be re-transplanting or transplanting other plants if chinese cabbage are exposed to suboptimal temperature conditions ($-3.0^{\circ}C$ or $-7.4^{\circ}C$).

키워드

참고문헌

  1. Ackerson, R.C. 1980. Stomatal response of cotton to water stress and abscisic acid as affected by water stress. Plant Physiol. 65:455-459. https://doi.org/10.1104/pp.65.3.455
  2. Christiansen, M.N. and E.N. Ashworth. 1978. Prevention of chilling injury to seedling cotton with antitranspirants. Crop Sci. 18:907-910. https://doi.org/10.2135/cropsci1978.0011183X001800050062x
  3. International Panel on Climate Change (IPCC). 2007. Fourth Assessment Report.
  4. Jo, H.K. 2002. Impacts of urban greenspace on offsetting carbon emissions for middle Korea. J. Environ. Management 64:115-126. https://doi.org/10.1006/jema.2001.0491
  5. Jones, R.J. and T.A. Mansfield. 1970. Supression of stomatal opening in leaves treated with abscisic acid. J. Exp. Bot. 21:714-719. https://doi.org/10.1093/jxb/21.3.714
  6. Kim, S.C. 2008. Development of greenhouse gas reduction system related with clean thermal power generation technology. Joint workshop of ministries and offices on climate change R&D projects. 619-627.
  7. King, A.I., M.S. Reid, and B.D. Patterson. 1982. Diurnal change in the chilling sensitivity of seedlings. Plant Physiol. 70:211-214. https://doi.org/10.1104/pp.70.1.211
  8. Lim, D.S. 2005. Tendency and confrontation on climatic change convention in OECD. KIET Industry & Economy (Dec., 2005):63-76.
  9. Nam, J.H., W.H. Kang, and I.S. Kim. 2001. Effect of CaCl2 and sucrose treatments on freezing tolerance of chines cabbage. J. Kor. Soc. Hort. Sci. 42(6):695-698.
  10. Nam, Y.I., Y.H. Woo, and K.H. Lee. 2006. Effects of soil moisture and chemical application on low temperature stress of cucumber seedling. J. Bio-Env. Con. 15(4):377-384.
  11. Reeser, C. M. and R.L. Hummel. 1996. Index of injury compared to tissue ionic conductance for calculating freeze damage of chinese cabbage tissues. J. Amer. Soc. Hort. Sci. 121(6):1141-1146.
  12. Rikin, A., A. Blumenfeld, and A.E. Richmond. 1976. Chilling resistance as affected by stressing environments and abscisic acid. Bot. Gaz. 137:307-312. https://doi.org/10.1086/336876
  13. Rikin, A., D.A. Tsmon, and C. Gitler. 1979. Chilling injury in cotton: Prevention by abscisic acid. Plant Cell Physiol. 20:1537-1541
  14. Salisbury and Ross. 1980. Plant Physiology. Wadsworth Publishing. Co. p. 421.
  15. Wilson, J.M. 1979. The mechanism of chill- and drought-hardening of Phaseolus vulgaris leaves. Mew Phytol. 76:257-260
  16. Zhang, J. and W.J. Davies. 1990. Changes in the concentration of ABA in xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth. Plant Cell Environ. 13:277-285. https://doi.org/10.1111/j.1365-3040.1990.tb01312.x