참고문헌
- American Association of State Highway and Transportation Officials (AASHTO). (2010). AASHTO LRFD Bridge Design Specifications. 5th Edition, Washington DC, USA.
- American Concrete Institute (ACI). (1992). Prediction of creep, shrinkage, and temperature effects in concrete structures. Technical Publication. ACI 209R-92.
- CEB-FIP. (2010). CEB-FIP Model Code 2010. Comite Euro- International du Beton.
- Dischinger, F. (1939a). Elastiche und Plastische Verformungen Der Eisenbetontragwerke Und Insbesondere Der Bogenbrucken. Der Bauingenieur, 47/48 (20), 563-572.
- Dischinger, F. (1939b). Elastiche und Plastische Verformungen Der Eisenbetontragwerke Und Insbesondere Der Bogenbrucken. Der Bauingenieur, 5/6 (20), 53-63.
- Dischinger, F. (1939c). Elastiche und Plastische Verformungen Der Eisenbetontragwerke Und Insbesondere Der Bogenbrucken. Der Bauingenieur, 21/22 (20), 286-437.
- Nemati, K. M. (2006). Modulus of elasticity of high-strength concrete. Karachi: CBM-CI International Workshop.
- Texas Department of Transportation (TxDOT). (2004). Texas Department of Transportation standard specifications. Austin: Texas Department of Transportation.
- Texas Department of Transportation (TxDOT). (2005). LRFD bridge design manual. Austin: Texas Department of Transportation.
- Texas Department of Transportation (TxDOT). (2007). Prestressed concrete beam design/analysis program user guide. Austin: Texas Department of Transportation.
- Texas Department of Transportation (TxDOT). (2010). Bridge design standards.Austin: TexasDepartment of Transportation.
- Texas Department of Transportation (TxDOT). (2012). Bridge railing manual. Austin: Texas Department of Transportation.
- Tia, M., Liu, Y.,& Brown, D. (2005). Modulus of elasticity, creep and shrinkage of concrete. Final report, Florida Department of Transportation, Contract No. BC-354.
- Yazdani, N., McKinnie, B., & Haroon, S. (2005). Aggregate based modulus of elasticity for Florida concrete. Journal of Transportation Research Record (TRR), 1914, 15-23. https://doi.org/10.3141/1914-03
피인용 문헌
- Creep Mechanisms of Calcium-Silicate-Hydrate: An Overview of Recent Advances and Challenges vol.9, pp.4, 2015, https://doi.org/10.1007/s40069-015-0114-7
- Effect of prestressing on the natural frequency of PSC bridges vol.17, pp.2, 2016, https://doi.org/10.12989/cac.2016.17.2.241
- Glass fiber-reinforced polymer packaged fiber Bragg grating sensors for low-speed weigh-in-motion measurements vol.55, pp.8, 2013, https://doi.org/10.1117/1.oe.55.8.086107
- Experimental and Numerical Assessment of the Service Behaviour of an Innovative Long-Span Precast Roof Element vol.11, pp.2, 2013, https://doi.org/10.1007/s40069-017-0187-6
- Modeling of Bond Stress–Slip Relationships of a Strand in Concrete during Steam Curing vol.11, pp.3, 2013, https://doi.org/10.1007/s40069-017-0210-y
- Experimental Analysis on Pre-Stress Friction Loss of Crushed Limestone Sand Concrete Beams vol.8, pp.5, 2013, https://doi.org/10.3390/app8050683
- State-of-the-Art Review on Determining Prestress Losses in Prestressed Concrete Girders vol.10, pp.20, 2020, https://doi.org/10.3390/app10207257
- Influence of prestressing on the behavior of uncracked concrete beams with a parabolic bonded tendon vol.77, pp.1, 2013, https://doi.org/10.12989/sem.2021.77.1.001
- Effects of Steel Fiber Percentage and Aspect Ratios on Fresh and Harden Properties of Ultra-High Performance Fiber Reinforced Concrete vol.2, pp.3, 2013, https://doi.org/10.3390/applmech2030028
- A Novel Artificial Neural Network to Predict Compressive Strength of Recycled Aggregate Concrete vol.11, pp.22, 2013, https://doi.org/10.3390/app112211077
- Experimental-theoretical investigation of the short-term vibration response of uncracked prestressed concrete members under long-age conditions vol.35, pp.None, 2022, https://doi.org/10.1016/j.istruc.2021.10.093