DOI QR코드

DOI QR Code

Analytical Tools and Databases for Metagenomics in the Next-Generation Sequencing Era

  • Kim, Mincheol (School of Biological Sciences & Institute of Bioinformatics (BIOMAX), Seoul National University) ;
  • Lee, Ki-Hyun (School of Biological Sciences & Institute of Bioinformatics (BIOMAX), Seoul National University) ;
  • Yoon, Seok-Whan (School of Biological Sciences & Institute of Bioinformatics (BIOMAX), Seoul National University) ;
  • Kim, Bong-Soo (Chunlab Inc., Seoul National University) ;
  • Chun, Jongsik (School of Biological Sciences & Institute of Bioinformatics (BIOMAX), Seoul National University) ;
  • Yi, Hana (Department of Environmental Health, Korea University)
  • Received : 2013.04.30
  • Accepted : 2013.05.08
  • Published : 2013.09.30

Abstract

Metagenomics has become one of the indispensable tools in microbial ecology for the last few decades, and a new revolution in metagenomic studies is now about to begin, with the help of recent advances of sequencing techniques. The massive data production and substantial cost reduction in next-generation sequencing have led to the rapid growth of metagenomic research both quantitatively and qualitatively. It is evident that metagenomics will be a standard tool for studying the diversity and function of microbes in the near future, as fingerprinting methods did previously. As the speed of data accumulation is accelerating, bioinformatic tools and associated databases for handling those datasets have become more urgent and necessary. To facilitate the bioinformatics analysis of metagenomic data, we review some recent tools and databases that are used widely in this field and give insights into the current challenges and future of metagenomics from a bioinformatics perspective.

Keywords

References

  1. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 1998;5:R245-R249. https://doi.org/10.1016/S1074-5521(98)90108-9
  2. Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 2000;289:1902-1906. https://doi.org/10.1126/science.289.5486.1902
  3. Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc Natl Acad Sci U S A 2008; 105:7774-7778. https://doi.org/10.1073/pnas.0803070105
  4. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A 2012;109:21390-21395. https://doi.org/10.1073/pnas.1215210110
  5. Metzker ML. Sequencing technologies: the next generation. Nat Rev Genet 2010;11:31-46. https://doi.org/10.1038/nrg2626
  6. Gilles A, Meglecz E, Pech N, Ferreira S, Malausa T, Martin JF. Accuracy and quality assessment of 454 GS-FLX titanium pyrosequencing. BMC Genomics 2011;12:245. https://doi.org/10.1186/1471-2164-12-245
  7. Teeling H, Glockner FO. Current opportunities and challenges in microbial metagenome analysis: a bioinformatic perspective. Brief Bioinform 2012;13:728-742. https://doi.org/10.1093/bib/bbs039
  8. Suenaga H. Targeted metagenomics: a high-resolution metagenomics approach for specific gene clusters in complex microbial communities. Environ Microbiol 2012;14:13-22. https://doi.org/10.1111/j.1462-2920.2011.02438.x
  9. Fox GE, Wisotzkey JD, Jurtshuk P Jr. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 1992;42:166-170. https://doi.org/10.1099/00207713-42-1-166
  10. Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P. A bioinformatician's guide to metagenomics. Microbiol Mol Biol Rev 2008;72:557-578. https://doi.org/10.1128/MMBR.00009-08
  11. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ. Removing noise from pyrosequenced amplicons. BMC Bioinformatics 2011;12:38. https://doi.org/10.1186/1471-2105-12-38
  12. Reeder J, Knight R. Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nat Methods 2010;7:668-669.
  13. Rosen MJ, Callahan BJ, Fisher DS, Holmes SP. Denoising PCR-amplified metagenome data. BMC Bioinformatics 2012; 13:283. https://doi.org/10.1186/1471-2105-13-283
  14. Bragg L, Stone G, Imelfort M, Hugenholtz P, Tyson GW. Fast, accurate error-correction of amplicon pyrosequences using Acacia. Nat Methods 2012;9:425-426. https://doi.org/10.1038/nmeth.1990
  15. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011;27:2194-2200. https://doi.org/10.1093/bioinformatics/btr381
  16. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 2011;21:494-504. https://doi.org/10.1101/gr.112730.110
  17. Wright ES, Yilmaz LS, Noguera DR. DECIPHER, a searchbased approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 2012;78:717-725. https://doi.org/10.1128/AEM.06516-11
  18. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010;26:2460-2461. https://doi.org/10.1093/bioinformatics/btq461
  19. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012;28:3150-3152. https://doi.org/10.1093/bioinformatics/bts565
  20. Cai Y, Sun Y. ESPRIT-Tree: hierarchical clustering analysis of millions of 16S rRNA pyrosequences in quasilinear computational time. Nucleic Acids Res 2011;39:e95. https://doi.org/10.1093/nar/gkr349
  21. Lee JH, Yi H, Jeon YS, Won S, Chun J. TBC: a clustering algorithm based on prokaryotic taxonomy. J Microbiol 2012;50: 181-185. https://doi.org/10.1007/s12275-012-1214-6
  22. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009;37: D141-D145. https://doi.org/10.1093/nar/gkn879
  23. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013;41:D590-D596. https://doi.org/10.1093/nar/gks1219
  24. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006;72:5069-5072. https://doi.org/10.1128/AEM.03006-05
  25. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62(Pt 3):716-721. https://doi.org/10.1099/ijs.0.038075-0
  26. Abarenkov K, Henrik Nilsson R, Larsson KH, Alexander IJ, Eberhardt U, Erland S, et al. The UNITE database for molecular identification of fungi: recent updates and future perspectives. New Phytol 2010;186:281-285. https://doi.org/10.1111/j.1469-8137.2009.03160.x
  27. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform- independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009;75:7537-7541. https://doi.org/10.1128/AEM.01541-09
  28. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7:335-336. https://doi.org/10.1038/nmeth.f.303
  29. Huson DH, Mitra S, Ruscheweyh HJ, Weber N, Schuster SC. Integrative analysis of environmental sequences using MEGAN4. Genome Res 2011;21:1552-1560. https://doi.org/10.1101/gr.120618.111
  30. Huse SM, Welch DM, Morrison HG, Sogin ML. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 2010;12:1889-1898. https://doi.org/10.1111/j.1462-2920.2010.02193.x
  31. Bradley RD, Hillis DM. Recombinant DNA sequences generated by PCR amplification. Mol Biol Evol 1997;14:592-593. https://doi.org/10.1093/oxfordjournals.molbev.a025797
  32. Hugenholtzt P, Huber T. Chimeric 16S rDNA sequences of diverse origin are accumulating in the public databases. Int J Syst Evol Microbiol 2003;53(Pt 1):289-293. https://doi.org/10.1099/ijs.0.02441-0
  33. Schloss PD, Gevers D, Westcott SL. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNAbased studies. PLoS One 2011;6:e27310. https://doi.org/10.1371/journal.pone.0027310
  34. DeSantis TZ Jr, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM, et al. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 2006;34:W394-W399.
  35. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673-4680. https://doi.org/10.1093/nar/22.22.4673
  36. Schloss PD. The effects of alignment quality, distance calculation method, sequence filtering, and region on the analysis of 16S rRNA gene-based studies. PLoS Comput Biol 2010; 6:e1000844. https://doi.org/10.1371/journal.pcbi.1000844
  37. Schloss PD. Secondary structure improves OTU assignments of 16S rRNA gene sequences. ISME J 2013;7:457-460. https://doi.org/10.1038/ismej.2012.102
  38. Pruesse E, Peplies J, Glockner FO. SINA: accurate highthroughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823-1829. https://doi.org/10.1093/bioinformatics/bts252
  39. Nawrocki EP, Kolbe DL, Eddy SR. Infernal 1.0: inference of RNA alignments. Bioinformatics 2009;25:1335-1337. https://doi.org/10.1093/bioinformatics/btp157
  40. Kumar S, Carlsen T, Mevik BH, Enger P, Blaalid R, Shalchian-Tabrizi K, et al. CLOTU: an online pipeline for processing and clustering of 454 amplicon reads into OTUs followed by taxonomic annotation. BMC Bioinformatics 2011; 12:182. https://doi.org/10.1186/1471-2105-12-182
  41. Hartmann M, Howes CG, VanInsberghe D, Yu H, Bachar D, Christen R, et al. Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. ISME J 2012;6:2199-2218. https://doi.org/10.1038/ismej.2012.84
  42. Sul WJ, Cole JR, Jesus EC, Wang Q, Farris RJ, Fish JA, et al. Bacterial community comparisons by taxonomy-supervised analysis independent of sequence alignment and clustering. Proc Natl Acad Sci U S A 2011;108:14637-14642. https://doi.org/10.1073/pnas.1111435108
  43. Lan Y, Wang Q, Cole JR, Rosen GL. Using the RDP classifier to predict taxonomic novelty and reduce the search space for finding novel organisms. PLoS One 2012;7:e32491. https://doi.org/10.1371/journal.pone.0032491
  44. Soergel DA, Dey N, Knight R, Brenner SE. Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J 2012;6:1440-1444. https://doi.org/10.1038/ismej.2011.208
  45. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403-410.
  46. Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res 2007;17:377-386. https://doi.org/10.1101/gr.5969107
  47. Clemente JC, Jansson J, Valiente G. Flexible taxonomic assignment of ambiguous sequencing reads. BMC Bioinformatics 2011;12:8. https://doi.org/10.1186/1471-2105-12-8
  48. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007;73: 5261-5267. https://doi.org/10.1128/AEM.00062-07
  49. Berger SA, Krompass D, Stamatakis A. Performance, accuracy, and Web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol 2011; 60:291-302. https://doi.org/10.1093/sysbio/syr010
  50. Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics 2010;11:538. https://doi.org/10.1186/1471-2105-11-538
  51. Mirarab S, Nguyen N, Warnow T. SEPP: SATe-enabled phylogenetic placement. Pac Symp Biocomput 2012:247-258.
  52. Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 2012;28: 1033-1034. https://doi.org/10.1093/bioinformatics/bts079
  53. Vergin KL, Urbach E, Stein JL, DeLong EF, Lanoil BD, Giovannoni SJ. Screening of a fosmid library of marine environmental genomic DNA fragments reveals four clones related to members of the order Planctomycetales. Appl Environ Microbiol 1998;64:3075-3078.
  54. Gianoulis TA, Raes J, Patel PV, Bjornson R, Korbel JO, Letunic I, et al. Quantifying environmental adaptation of metabolic pathways in metagenomics. Proc Natl Acad Sci U S A 2009;106:1374-1379. https://doi.org/10.1073/pnas.0808022106
  55. Yutin N, Suzuki MT, Teeling H, Weber M, Venter JC, Rusch DB, et al. Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environ Microbiol 2007;9:1464- 1475. https://doi.org/10.1111/j.1462-2920.2007.01265.x
  56. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010;20:265-272. https://doi.org/10.1101/gr.097261.109
  57. Laserson J, Jojic V, Koller D. Genovo: de novo assembly for metagenomes. J Comput Biol 2011;18:429-443. https://doi.org/10.1089/cmb.2010.0244
  58. Peng Y, Leung HC, Yiu SM, Chin FY. Meta-IDBA: a de novo assembler for metagenomic data. Bioinformatics 2011;27:i94- i101. https://doi.org/10.1093/bioinformatics/btr216
  59. Namiki T, Hachiya T, Tanaka H, Sakakibara Y. MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res 2012;40:e155. https://doi.org/10.1093/nar/gks678
  60. Lai B, Ding R, Li Y, Duan L, Zhu H. A de novo metagenomic assembly program for shotgun DNA reads. Bioinformatics 2012;28:1455-1462. https://doi.org/10.1093/bioinformatics/bts162
  61. Boisvert S, Raymond F, Godzaridis E, Laviolette F, Corbeil J. Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol 2012;13:R122. https://doi.org/10.1186/gb-2012-13-12-r122
  62. Koren S, Treangen TJ, Pop M. Bambus 2: scaffolding metagenomes. Bioinformatics 2011;27:2964-2971. https://doi.org/10.1093/bioinformatics/btr520
  63. Gori F, Folino G, Jetten MS, Marchiori E. MTR: taxonomic annotation of short metagenomic reads using clustering at multiple taxonomic ranks. Bioinformatics 2011;27:196-203. https://doi.org/10.1093/bioinformatics/btq649
  64. Monzoorul Haque M, Ghosh TS, Komanduri D, Mande SS. SOrt-ITEMS: sequence orthology based approach for improved taxonomic estimation of metagenomic sequences. Bioinformatics 2009;25:1722-1730. https://doi.org/10.1093/bioinformatics/btp317
  65. Glass EM, Wilkening J, Wilke A, Antonopoulos D, Meyer F. Using the metagenomics RAST server (MG-RAST) for analyzing shotgun metagenomes. Cold Spring Harb Protoc 2010; 2010:pdb.prot5368.
  66. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 2005;33:5691-5702. https://doi.org/10.1093/nar/gki866
  67. Gerlach W, Stoye J. Taxonomic classification of metagenomic shotgun sequences with CARMA3. Nucleic Acids Res 2011; 39:e91. https://doi.org/10.1093/nar/gkr225
  68. Wu M, Eisen JA. A simple, fast, and accurate method of phylogenomic inference. Genome Biol 2008;9:R151. https://doi.org/10.1186/gb-2008-9-10-r151
  69. Liu B, Gibbons T, Ghodsi M, Treangen T, Pop M. Accurate and fast estimation of taxonomic profiles from metagenomic shotgun sequences. BMC Genomics 2011;12 Suppl 2:S4.
  70. Rosen GL, Reichenberger ER, Rosenfeld AM. NBC: the naive Bayes classification tool webserver for taxonomic classification of metagenomic reads. Bioinformatics 2011;27: 127-129. https://doi.org/10.1093/bioinformatics/btq619
  71. Brady A, Salzberg SL. Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models. Nat Methods 2009;6:673-676. https://doi.org/10.1038/nmeth.1358
  72. McHardy AC, Martin HG, Tsirigos A, Hugenholtz P, Rigoutsos I. Accurate phylogenetic classification of variable- length DNA fragments. Nat Methods 2007;4:63-72. https://doi.org/10.1038/nmeth976
  73. Diaz NN, Krause L, Goesmann A, Niehaus K, Nattkemper TW. TACOA: taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach. BMC Bioinformatics 2009;10:56. https://doi.org/10.1186/1471-2105-10-56
  74. Weber M, Teeling H, Huang S, Waldmann J, Kassabgy M, Fuchs BM, et al. Practical application of self-organizing maps to interrelate biodiversity and functional data in NGS-based metagenomics. ISME J 2011;5:918-928. https://doi.org/10.1038/ismej.2010.180
  75. MacDonald NJ, Parks DH, Beiko RG. Rapid identification of high-confidence taxonomic assignments for metagenomic data. Nucleic Acids Res 2012;40:e111. https://doi.org/10.1093/nar/gks335
  76. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 2012;9:811-814. https://doi.org/10.1038/nmeth.2066
  77. Markowitz VM, Chen IM, Chu K, Szeto E, Palaniappan K, Grechkin Y, et al. IMG/M: the integrated metagenome data management and comparative analysis system. Nucleic Acids Res 2012;40:D123-D129. https://doi.org/10.1093/nar/gkr975
  78. Goll J, Rusch DB, Tanenbaum DM, Thiagarajan M, Li K, Methe BA, et al. METAREP: JCVI metagenomics reports: an open source tool for high-performance comparative metagenomics. Bioinformatics 2010;26:2631-2632. https://doi.org/10.1093/bioinformatics/btq455
  79. Seshadri R, Kravitz SA, Smarr L, Gilna P, Frazier M. CAMERA: a community resource for metagenomics. PLoS Biol 2007;5:e75. https://doi.org/10.1371/journal.pbio.0050075
  80. Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, et al. The metagenomics RAST server: a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 2008;9:386. https://doi.org/10.1186/1471-2105-9-386
  81. Noguchi H, Park J, Takagi T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res 2006;34:5623-5630. https://doi.org/10.1093/nar/gkl723
  82. Noguchi H, Taniguchi T, Itoh T. MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res 2008;15:387-396. https://doi.org/10.1093/dnares/dsn027
  83. Hoff KJ, Lingner T, Meinicke P, Tech M. Orphelia: predicting genes in metagenomic sequencing reads. Nucleic Acids Res 2009;37:W101-W105. https://doi.org/10.1093/nar/gkp327
  84. Rho M, Tang H, Ye Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res 2010;38:e191. https://doi.org/10.1093/nar/gkq747
  85. Kelley DR, Liu B, Delcher AL, Pop M, Salzberg SL. Gene prediction with Glimmer for metagenomic sequences augmented by classification and clustering. Nucleic Acids Res 2012;40:e9. https://doi.org/10.1093/nar/gkr1067
  86. Zhu W, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 2010;38:e132. https://doi.org/10.1093/nar/gkq275
  87. Hayes WS, Borodovsky M. How to interpret an anonymous bacterial genome: machine learning approach to gene identification. Genome Res 1998;8:1154-1171. https://doi.org/10.1101/gr.8.11.1154
  88. Yada T, Nakao M, Totoki Y, Nakai K. Modeling and predicting transcriptional units of Escherichia coli genes using hidden Markov models. Bioinformatics 1999;15:987-993. https://doi.org/10.1093/bioinformatics/15.12.987
  89. Nguyen MN, Ma J, Fogel GB, Rajapakse JC. Di-codon usage for classification of genes. Biosystems 2009;98:1-6. https://doi.org/10.1016/j.biosystems.2009.06.005
  90. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 2010; 11:119. https://doi.org/10.1186/1471-2105-11-119
  91. Tanenbaum DM, Goll J, Murphy S, Kumar P, Zafar N, Thiagarajan M, et al. The JCVI standard operating procedure for annotating prokaryotic metagenomic shotgun sequencing data. Stand Genomic Sci 2010;2:229-237. https://doi.org/10.4056/sigs.651139
  92. Salzberg SL, Delcher AL, Kasif S, White O. Microbial gene identification using interpolated Markov models. Nucleic Acids Res 1998;26:544-548. https://doi.org/10.1093/nar/26.2.544
  93. Prakash T, Taylor TD. Functional assignment of metagenomic data: challenges and applications. Brief Bioinform 2012;13:711-727. https://doi.org/10.1093/bib/bbs033
  94. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 2003;4:41. https://doi.org/10.1186/1471-2105-4-41
  95. Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M, Muller J, et al. eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res 2012;40:D284-D289. https://doi.org/10.1093/nar/gkr1060
  96. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res 2012;40:D290-D301. https://doi.org/10.1093/nar/gkr1065
  97. Haft DH, Selengut JD, White O. The TIGRFAMs database of protein families. Nucleic Acids Res 2003;31:371-373. https://doi.org/10.1093/nar/gkg128
  98. Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol 2011;7:e1002195. https://doi.org/10.1371/journal.pcbi.1002195
  99. Meyer F, Overbeek R, Rodriguez A. FIGfams: yet another set of protein families. Nucleic Acids Res 2009;37:6643-6654. https://doi.org/10.1093/nar/gkp698
  100. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013;41:D808-D815. https://doi.org/10.1093/nar/gks1094
  101. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27-30. https://doi.org/10.1093/nar/28.1.27
  102. Claudel-Renard C, Chevalet C, Faraut T, Kahn D. Enzymespecific profiles for genome annotation: PRIAM. Nucleic Acids Res 2003;31:6633-6639. https://doi.org/10.1093/nar/gkg847
  103. Bairoch A. The ENZYME database in 2000. Nucleic Acids Res 2000;28:304-305. https://doi.org/10.1093/nar/28.1.304
  104. Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P, Keseler IM, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/ genome databases. Nucleic Acids Res 2012;40:D742- D753. https://doi.org/10.1093/nar/gkr1014
  105. Liu B, Pop M. MetaPath: identifying differentially abundant metabolic pathways in metagenomic datasets. BMC Proc 2011;5 Suppl 2:S9.
  106. Parks DH, Beiko RG. Identifying biologically relevant differences between metagenomic communities. Bioinformatics 2010;26:715-721. https://doi.org/10.1093/bioinformatics/btq041
  107. Yilmaz P, Kottmann R, Field D, Knight R, Cole JR, Amaral-Zettler L, et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat Biotechnol 2011;29:415-420. https://doi.org/10.1038/nbt.1823
  108. Stepanauskas R. Single cell genomics: an individual look at microbes. Curr Opin Microbiol 2012;15:613-620. https://doi.org/10.1016/j.mib.2012.09.001
  109. Baran Y, Halperin E. Joint analysis of multiple metagenomic samples. PLoS Comput Biol 2012;8:e1002373. https://doi.org/10.1371/journal.pcbi.1002373

Cited by

  1. Metagenomics, paratransgenesis and the Anopheles microbiome: a portrait of the geographical distribution of the anopheline microbiota based on a meta-analysis of reported taxa vol.109, pp.5, 2014, https://doi.org/10.1590/0074-0276140194
  2. Systems biology in inflammatory bowel diseases vol.30, pp.4, 2014, https://doi.org/10.1097/MOG.0000000000000081
  3. Analysis of plant microbe interactions in the era of next generation sequencing technologies vol.5, pp.1664-462X, 2014, https://doi.org/10.3389/fpls.2014.00216
  4. Complete Chloroplast Genome of Tanaecium tetragonolobum: The First Bignoniaceae Plastome vol.10, pp.6, 2015, https://doi.org/10.1371/journal.pone.0129930
  5. An overview of malaria transmission from the perspective of Amazon Anopheles vectors vol.110, pp.1, 2015, https://doi.org/10.1590/0074-02760140266
  6. Exploiting the architecture and the features of the microsporidian genomes to investigate diversity and impact of these parasites on ecosystems vol.114, pp.5, 2015, https://doi.org/10.1038/hdy.2014.78
  7. Improved cultivation and metagenomics as new tools for bioprospecting in cold environments vol.19, pp.1, 2015, https://doi.org/10.1007/s00792-014-0704-3
  8. Comparison of Fecal Microbial Communities between White and Black Pigs vol.58, pp.4, 2015, https://doi.org/10.3839/jabc.2015.058
  9. Challenges and Opportunities of Airborne Metagenomics vol.7, pp.5, 2015, https://doi.org/10.1093/gbe/evv064
  10. Metagenomic Classification Using an Abstraction Augmented Markov Model pp.1557-8666, 2015, https://doi.org/10.1089/cmb.2015.0141
  11. Towards biome-specific analysis of meta-omics data vol.10, pp.5, 2016, https://doi.org/10.1038/ismej.2015.188
  12. The bovine milk microbiota: insights and perspectives from -omics studies vol.12, pp.8, 2016, https://doi.org/10.1039/C6MB00217J
  13. Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome Analysis vol.12s1, pp.1176-9343, 2016, https://doi.org/10.4137/EBO.S36436
  14. Reclassification of the taxonomic status of SEMIA3007 isolated in Mexico B-11A Mex as Rhizobium leguminosarum bv. viceae by bioinformatic tools vol.16, pp.1, 2016, https://doi.org/10.1186/s12866-016-0882-5
  15. Unraveling the Functions of the Macroalgal Microbiome vol.6, pp.1664-302X, 2016, https://doi.org/10.3389/fmicb.2015.01488
  16. Bioinformatic Analyses of Unique (Orphan) Core Genes of the Genus Acidithiobacillus: Functional Inferences and Use As Molecular Probes for Genomic and Metagenomic/Transcriptomic Interrogation vol.7, pp.1664-302X, 2016, https://doi.org/10.3389/fmicb.2016.02035
  17. Environmental Viral Metagenomics Analyses in Aquaculture: Applications in Epidemiology and Disease Control vol.7, pp.1664-302X, 2016, https://doi.org/10.3389/fmicb.2016.01986
  18. Metavisitor, a Suite of Galaxy Tools for Simple and Rapid Detection and Discovery of Viruses in Deep Sequence Data vol.12, pp.1, 2017, https://doi.org/10.1371/journal.pone.0168397
  19. Assessment of Common and Emerging Bioinformatics Pipelines for Targeted Metagenomics vol.12, pp.1, 2017, https://doi.org/10.1371/journal.pone.0169563
  20. Development of locus specific sub-clone separation by fluorescence in situ hybridization in suspension in chronic lymphocytic leukemia vol.91, pp.11, 2017, https://doi.org/10.1002/cyto.a.23264
  21. Killing Me Softly—Future Challenges in Apoptosis Research vol.15, pp.3, 2014, https://doi.org/10.3390/ijms15033746
  22. Fecal microbiota analysis: an overview of sample collection methods and sequencing strategies vol.10, pp.9, 2015, https://doi.org/10.2217/fmb.15.87
  23. Dual specificity phosphatase 5 and 6 are oppositely regulated in human skeletal muscle by acute exercise vol.5, pp.19, 2017, https://doi.org/10.14814/phy2.13459
  24. Classifying nitrilases as aliphatic and aromatic using machine learning technique vol.8, pp.1, 2018, https://doi.org/10.1007/s13205-018-1102-9
  25. Cyanobacterial diversity in the algal–bacterial consortia from Subarctic regions: new insights from the rock baths at White Sea Coast pp.1573-5117, 2018, https://doi.org/10.1007/s10750-018-3844-0
  26. Genetic and functional diversity of double-stranded DNA viruses in a tropical monsoonal estuary, India vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-34332-8
  27. NFATC3–PLA2G15 Fusion Transcript Identified by RNA Sequencing Promotes Tumor Invasion and Proliferation in Colorectal Cancer Cell Lines vol.51, pp.1, 2019, https://doi.org/10.4143/crt.2018.103
  28. The effect of 16S rRNA region choice on bacterial community metabarcoding results vol.6, pp.2052-4463, 2019, https://doi.org/10.1038/sdata.2019.7