LPS로 유도된 RAW264.7 세포주에서 개화정도별 괴화 EtOH 추출물의 항염증 효과 비교연구

A Comparison of Anti-inflammatory Effects of Sophorae Flos EtOH Extracts at the Different Flowering Stages on LPS-induced Inflammation in RAW264.7 cells

  • 고원민 (원광대학교 약학대학 천연물신소재은행) ;
  • 이동성 (원광대학교 한방체액조절연구센터) ;
  • 장미 (원광대학교 약품연구소) ;
  • 김경수 (원광대학교 약학대학 천연물신소재은행) ;
  • 이희숙 (원광대학교 대학원 식품융복합학과) ;
  • 백흠영 (한국인스팜) ;
  • 오현철 (원광대학교 약학대학 천연물신소재은행) ;
  • 김윤철 (원광대학교 약학대학 천연물신소재은행)
  • Ko, Wn-Min (Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University) ;
  • Lee, Dong-Sung (Hanbang Body-Fluid Research Center, Wonkwang University) ;
  • Jang, Mi (Institute of Pharmaceutical Research and Development,College of Pharmacy, Wonkwang University) ;
  • Kim, Kyoung-Su (Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University) ;
  • Lee, Hee-Suk (College of human environmental sciences, Department of food industry convergence, Wonkwang University) ;
  • Baek, Hum-Young (Korea INSpharm Research Institute) ;
  • Oh, Hyuncheol (Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University) ;
  • Kim, Youn-Chul (Standardized Material Bank for New Botanical Drugs, College of Pharmacy, Wonkwang University)
  • 투고 : 2013.08.06
  • 심사 : 2013.09.13
  • 발행 : 2013.09.30

초록

Sophorae Flos (SF), a composite of flowers and flower-buds of Sophora japonica, has long been used in traditional Korean and Chinese medicines for the treatment of hemostasis and inflammation. In this study, we investigated anti-inflammatory effect of four EtOH extracts at the difference in blooming stages of flowers on LPS-induced inflammation in RAW264.7 cells. We classified the flowers of Sophora japonica with SF-1 (length of flower is shorter than calyx), SF-2 (length of calyx is shorter than flower), SF-3 (full bloom), and SF-4 (not blooming at all). We examined HPLC analysis, whether quercetin and rutin are major component of these Sophorae Flos extracts or not. As a result, SF-1 contained quercetin, but the others did not. In addition, quercetin, SF-1, and SF-4 act on the suppression of pro-inflammatory mediators including inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, nitric oxide (NO), prostaglandin E2 ($PGE_2$) against lipopolysaccharide (LPS)-induced activation in RAW264.7 cells. Of these, SF-1 showed the best anti-inflammatory effect. These results suggest that Sophorae Flos with the highest content of quercetin would be used for the treatment of various inflammation diseases.

키워드

참고문헌

  1. 서부일, 이제현, 최호영, 권동렬, 부영민. (2004) 한약본초학, 543, 영림사, 서울.
  2. Lee, K. S. and Shin, M. K. (1997) The encyclopedia of oriental herbal medicine, 381, Jungdam, Seoul, Korea.
  3. Kite, G. C., Veitch, N. C., Boalch, M. E., Lewis, G. P., Leon, C. J. and Simmonds, M. S. (2009) Flavonol tetraglycosides from fruits of Styphnolobium japonicum (Leguminosae) and the authentication of Fructus Sophorae and Flos Sophorae. Phytochemistry 70: 785-794. https://doi.org/10.1016/j.phytochem.2009.04.003
  4. Kim, J. M. and Yun Choi, H. S. (2008) Anti-platelet effects of flavonoids and flavonoid-glycosides from Sophora japonica. Arch. Pharm. Res. 31: 886-890. https://doi.org/10.1007/s12272-001-1242-1
  5. Tang, Y. P., Zhu, H. X. and Duan, J. A. (2008) Two new isoflavone triglycosides from the small branches of Sophora japonica. J. Asian Nat. Prod. Res. 10: 65-70. https://doi.org/10.1080/10286020701273858
  6. Tang, Y., Yang, R., Duan, J. A., Shang, E., Su, S., Zhu, M. and Qian, D. (2008) Isoflavone tetraglycosides from Sophora japonica leaves. J. Nat. Prod. 71: 448-450. https://doi.org/10.1021/np070396t
  7. Jung, C. H., Zhou, S., Ding, G. X., Kim, J. H., Hong, M. H., Shin, Y. C., Kim, G. J. and Ko, S. G. (2006) Antihyperglycemic activity of herb extracts on streptozotocin-induced diabetic rats. Biosci. Biotechnol. Biochem. 70: 2556-2559. https://doi.org/10.1271/bbb.60238
  8. Kim, B. H., Chung, E. Y., Min, B. K., Lee, S. H., Kim, M. K., Min, K. R. and Kim, Y. (2003) Anti-inflammatory action of legume isoflavonoid sophoricoside through inhibition on cyclooxygenase-2 activity. Planta Med. 69:474-476. https://doi.org/10.1055/s-2003-39712
  9. 생약교재편찬위원회 (2006) 생약학, 565, 동명사, 서울.
  10. Moon, H. I., Ahn, K. T., Lee. K. R. and Zee, O. P. (2000) Fla- vonoid compounds and biological activities on the aerial parts of Angelica gigas. J. Pharm. Soc. Kor. 44: 119-127.
  11. Ishida, H., Umino. T., Tsuji, K. and Kosuge, T. (1989) Studies on the antihemostatic substances in herbs classified as hemostatics in traditional Chinese medicine. I. On the antihemostatic principles in Sophora japonica L. Chem. Pharm. Bull. 37: 1616-1618. https://doi.org/10.1248/cpb.37.1616
  12. Kang, T. B. and Liang. N. C. (1997) Studies on the inhibitory effects of quercetin on the growth of HL-60 leukemia cells. Biochem. Pharmacol. 54: 1013-1018. https://doi.org/10.1016/S0006-2952(97)00260-8
  13. Shen, S. C., Lee, W. R., Lin, H. Y., Huang, H. C., Ko, C. H., Yang. L. L. and Chen, Y. C. (2002) In vitro and in vivo inhibitory activities of rutin, wogonin, and quercetin on lipopolysaccharide-induced nitric oxide and prostaglandin E(2) production. Eur. J. Pharmacol. 446: 187-194. https://doi.org/10.1016/S0014-2999(02)01792-2
  14. Zamora, R., Vodovotz, Y. and Billiar, T. R. (2000) Inducible nitric oxide synthase and inflammatory diseases. Mol. Med. 6: 347-373.
  15. Trowbridge, H. O. and Emling, R. C. (1997) Inflammation: a review of the process, 5th ed. Quintessence Pub. Co., Chicago.
  16. Arenzana-Seisdedos, F., Teyton, L. and Virelizier, J. L. (1987) Immunoregulatory mediators in the pathogenesis of rheumatoid arthritis. Scand. J. Rheumatol. Suppl. 66: 13-17.
  17. Le, J. and Vilcek, J. (1987) Tumor necrosis factor and interleukin 1: cytokines with multiple overlapping biological activities. Lab. Invest. 56: 234-248.
  18. Snyder, S. H. and Bredt, D. S. (1992) Biological roles of nitric oxide. Sci. Am. 266: 68-71.
  19. Shew, R. L., Papka, R. E., McNeill, D. L. and Yee, J. A. (1993) NADPH-diaphorase-positive nerves and the role of nitric oxide in CGRP relaxation of uterine contraction. Peptides. 14: 637-641. https://doi.org/10.1016/0196-9781(93)90157-C
  20. Kwqamata, H., Ochiai, H., Mantani, N. and Terasawa, K. (2000) Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS activated RAW 264.7 cells, a murine macrophage cell line. Am. J. Chin. Med. 28: 217-226. https://doi.org/10.1142/S0192415X0000026X
  21. Wu, G. H., Zhang, Y. W. and Wu, Z. H. (2001) Modulation of postoperative immune and inflammatory response by immune-enhancing enteral diet in gastrointestinal cancer patients. World J. Gastroenterol. 7: 357-362.
  22. Bryan, N. S. (2006) Nitrite in nitric oxide biology: cause orconsequence? A system based review. Free Radic. Biol. Med. 41: 691-701. https://doi.org/10.1016/j.freeradbiomed.2006.05.019
  23. Ghosh, S., May, M. J. and Kopp, E. B. (1998) NF-${\kappa}B$ and REL proteins: Evolutionarily conserved mediators of immune responses. Ann. Rev. Immunol. 16: 225-260. https://doi.org/10.1146/annurev.immunol.16.1.225
  24. Gevrenova, R., Kitanov, G. and Ilieva, D. (2007) Ontogenetic and seasonal variation in the flavonoid composition of Sophora japonica cultivated in Bulgaria. Pharm. Biol. 45: 149-155.
  25. Titheradge, M. A. (1998) The enzymatic measurement of nitrate and nitrite. Meth. Mol. Biol. 100: 83-91.
  26. Lee, D. S., Jeong, G. S., Li, B., Park, H. and Kim, Y. C. (2010) Anti-inflammatory effects of sulfuretin from Rhus verniciflua Stokes via the induction of heme oxygenase-1 expression in murine macrophages. Int. Immunopharmacol. 10: 850-858. https://doi.org/10.1016/j.intimp.2010.04.019
  27. Lee, D. S., Jeong, G. S., Li, B., Park, H. and Kim, Y. C. (2010) Anti-inflammatory effects of sulfuretin from Rhus verniciflua Stokes via the induction of heme oxygenase-1 expression in murine macrophages. Int. Immunopharmacol. 10: 850-858. https://doi.org/10.1016/j.intimp.2010.04.019
  28. Tenhunen, R., Marver, H. S. and Schmidt, R. (1970) The enzymatic catabolism of hemoglobin: stimulation of microsomal hemeoxygenase by hemin. J. Lab. Clin. Med. 75: 410-421.
  29. Knowles, R. G. and Moncada, S. (1994) Nitric oxide synthases in mammals. Biochem. J. 298: 249-258.