References
- Ariefdjohan, M.W., Martin, B.R., Lachcik, P.J., and Weaver, C.M., Acute and chronic effects of honey and its carbohydrate constituents on calcium Absorption in Rats. Journal of Agricultural and Food Chemistry. 56, 2649-2654 (2008). https://doi.org/10.1021/jf073357w
- Bae, N., Ahn, T., Chung, S.K., Oh, M.S., Ko, H., Oh, H., Park, G., and Yang, H.O., The neuroprotective effect of modified Yeoldhanso-tang via autophagy enhancement in models of Parkinson's disease. Journal of Ethnopharmacology. 134, 313-322 (2011). https://doi.org/10.1016/j.jep.2010.12.016
- Berger, Z., Ravikumar, B., Menzies, F.M., Oroz, L.G., Underwood, B.R., Pangalos, M.N., Schmitt, I., Wullner, U., Evert, B.O., O'Kane, C.J., and Rubinsztein, D.C., Rapamycin alleviates toxicity of different aggregate-prone proteins. Human Molecular Genetics. 15, 433-442 (2006). https://doi.org/10.1093/hmg/ddi458
- Biederbick, A., Kern, H.F., and Elsasser, H.P., Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. European Journal of Cell Biology. 66, 3-14 (1995).
- Chen, H., Yan, X.J., Zhu, P., and Lin, J., Antioxidant activity and hepatoprotective potential of agaro-oligosaccharides in vitro and in vivo. Nutrition Journal. 5, 1-12 (2006). https://doi.org/10.1186/1475-2891-5-1
- Cho, I.H., Effects of Panax Ginseng in neurodegenerative disease. Journal of Ginseng Research. 36(4), 342-353 (2012). https://doi.org/10.5142/jgr.2012.36.4.342
- Ciechanover, A., Proteolysis: from the lysosome to ubiquitin and the proteasome. Nature Reviews Molecular Cell Biology. 6, 79-86 (2005). https://doi.org/10.1038/nrm1552
- Erlich, S., Alexandrovich, A., Shohami, E., and Pinkas-Kramarski, R., Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiololgy of Disease. 26, 86-93 (2007). https://doi.org/10.1016/j.nbd.2006.12.003
- Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO Journal. 19, 5720-5728 (2000). https://doi.org/10.1093/emboj/19.21.5720
- Kim, Y.K., Ahn, J.H., and Lee, M.C., Src family kinase inhibitor PP2 induces lc3 conversion in a manner that is uncoupled from autophagy and increases apoptosis in multidrug-resistant cells. Biomolecules & Therapeutics. 20, 393-398 (2012). https://doi.org/10.4062/biomolther.2012.20.4.393
- Laidlaw, R.A., and Wylam, C.B., The structure of stachyose. Journal of the Chemical Society. 114, 567-571 (1953).
- Lim, Y., Son, D.J., Kim, Y.B., Hwang, B.Y., Yun, Y.P., and Hwang, S.Y., Effect of Yacon on platelet function in hypercholesterolemic rabbits. Biomolecules & Therapeutics. 19, 472-476 (2011). https://doi.org/10.4062/biomolther.2011.19.4.472
- Lucchesi, K.J. and Gosselin, R.E., Mechanism of L-glucose, raffinose, and inulin transport across intact blood-brain barriers. American Journal of Physiology. 258, H695-705 (1990).
- Matsukawa, N., Matsumoto, M., Chiji, H., and Hara, H., Oligosaccharide promotes bioavailability of a water-soluble flavonoid glycoside, aGrutin, in rats. Journal of Agricultural and Food Chemistry. 57, 1498- 1505 (2009). https://doi.org/10.1021/jf802390v
- Mizushima, N., Methods for monitoring autophagy. The International Journal of Biochemistry & Cell Biology. 36, 2491-2502 (2004). https://doi.org/10.1016/j.biocel.2004.02.005
- MunafO, D.B. and Colomb, M.I., A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. Journal of Cell Science. 114, 3619-3629 (2001).
- Nedelsky, N.B., Todd, P.K., and Taylor, J.P., Autophagy and the ubiquitinproteasome system: Collaborators in neuroprotection. Biochimica et Biophysica Acta. 1782, 691-699 (2008). https://doi.org/10.1016/j.bbadis.2008.10.002
- Neubauer, H., Meiler, J., Peti, W., and Griesinger, C., NMR structure determination of saccharose and raffinose by means of homo- and heteronuclear dipolar couplings. Helvetica Chimica Acta. 84, 243-258 (2001). https://doi.org/10.1002/1522-2675(20010131)84:1<243::AID-HLCA243>3.0.CO;2-F
- Pan, T., Kondo, S., Le, W., and Jankovic, J., The role of autophagylysosome pathway in neurodegeneration associated with Parkinson's disease. Brain. 131, 1969-1978 (2008). https://doi.org/10.1093/brain/awm318
- Pan, T., Kondo, S., Zhu, W., Xie, W., Jankovic, J., and Le, W., Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiology of Disease. 32, 16-25 (2008). https://doi.org/10.1016/j.nbd.2008.06.003
- Pangestui, R. and Kim, S.K., Neuroprotective properties of chitosan and its derivatives. Marine Drugs. 8, 2117-2128 (2010). https://doi.org/10.3390/md8072117
- Parker, E.M., Monopoli, A., Ongini, E., Lozza, G., and Babij, C.M., Rapamycin, but not FK506 and GPI-1046, increases neurite outgrowth in PC12 cells by inhibiting cell cycle progression. Neuropharmacology. 39, 1913-1919 (2000). https://doi.org/10.1016/S0028-3908(00)00028-9
- Qiao, Y., Bai, X.F., and Du, Y.G., Chitosan oligosaccharides protect mice from LPS challenge by attenuation of inflammation and oxidative stress. International Immunopharmacology. 11, 121-127 (2011). https://doi.org/10.1016/j.intimp.2010.10.016
- Rubinsztein, D.C., The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 443, 780-786 (2006). https://doi.org/10.1038/nature05291
- Taylor, J.P., Hardy, J., and Fischbeck, K.H., Toxic proteins in neurodegenerative disease. Science. 296, 1991-1995 (2002). https://doi.org/10.1126/science.1067122
- Webb, J.S., Thompson, L.S., James, S., Charlton, T., Tolker-Nielsen, T., Koch, B., Giveskov, M., and Kjelleberg, S., Cell death in Pseudomonas aeruginosa biofilm development. Journal of Bacteriology. 185, 4585-4592 (2003). https://doi.org/10.1128/JB.185.15.4585-4592.2003
- Wu, Y.T., Tan, H.L., Huang, Q., Kim, Y.S., Pan, N., Ong, W.Y., Liu, Z.G., Ong, C.N., and Shen, H.M., Autophagy plays a protective role during zVAD-induced necrotic cell death. Landes Bioscience. 4, 457-66 (2008).
- Zemke, D., Azhar, S., and Majid, A., The mTOR pathway as a potential target for the development of therapies against neurological disease. Drug News Perspect. 20, 495-499 (2007). https://doi.org/10.1358/dnp.2007.20.8.1157618
- Wakao, N., Imagama, S., Zhang, H., Tauchi, R., Muramoto, A., Natori, T., Takeshita, S., Ishiguro, N., Matsuyama, Y., and Kadomatsu, K., Hyaluronan oligosaccharides promote functional recovery after spinal cord injury in rats. 488, 299-304 (2011). https://doi.org/10.1016/j.neulet.2010.11.051