Isolation and Identification of an Autophagy-inducing Compound from Raphani Semen

  • Gu, Ming-Yao (Natural Medicine Center, Korea Institute of Science and Technology) ;
  • Kwon, Hak Cheol (Natural Medicine Center, Korea Institute of Science and Technology) ;
  • Song, Min Ok (Natural Medicine Center, Korea Institute of Science and Technology) ;
  • Ko, Hyeonseok (Natural Medicine Center, Korea Institute of Science and Technology) ;
  • Cha, Jin-Wook (Natural Medicine Center, Korea Institute of Science and Technology) ;
  • Lee, Won Jong (Gangneung-Wonju National University) ;
  • Yang, Hyun Ok (Natural Medicine Center, Korea Institute of Science and Technology)
  • Received : 2013.05.24
  • Accepted : 2013.07.16
  • Published : 2013.09.30

Abstract

The autophagy-lysosomal pathway is an important protein degradation system, and its dysfunction has been implicated in a number of neurodegenerative diseases, including Parkinson's disease. Raphani Semen, one of the herbs of Yeoldahanso-tang (YH), has neuroprotective effects via the autophagy pathway. The activity-guided method was used to isolate and identify the components of Raphani Semen. In this experiment, the total extract of Raphani Semen was partitioned to n-butanol, methylene chloride, and water fractions. Flow cytometry data showed that only the water fraction showed autophagy-inducing activity in vitro. Compounds 1 and 2 were isolated from this water fraction by preparative HPLC separation. The structures of compounds 1 and 2 were identified as stachyose and raffinose, respectively, by the analysis of various spectral data ($^1H$ NMR, $^{13}C$ NMR, and MS) and comparisons with standard stachyose and raffinose. Of these two compounds, raffinose showed autophagy-inducing activity in PC12 cells through the mTOR pathway.

Keywords

References

  1. Ariefdjohan, M.W., Martin, B.R., Lachcik, P.J., and Weaver, C.M., Acute and chronic effects of honey and its carbohydrate constituents on calcium Absorption in Rats. Journal of Agricultural and Food Chemistry. 56, 2649-2654 (2008). https://doi.org/10.1021/jf073357w
  2. Bae, N., Ahn, T., Chung, S.K., Oh, M.S., Ko, H., Oh, H., Park, G., and Yang, H.O., The neuroprotective effect of modified Yeoldhanso-tang via autophagy enhancement in models of Parkinson's disease. Journal of Ethnopharmacology. 134, 313-322 (2011). https://doi.org/10.1016/j.jep.2010.12.016
  3. Berger, Z., Ravikumar, B., Menzies, F.M., Oroz, L.G., Underwood, B.R., Pangalos, M.N., Schmitt, I., Wullner, U., Evert, B.O., O'Kane, C.J., and Rubinsztein, D.C., Rapamycin alleviates toxicity of different aggregate-prone proteins. Human Molecular Genetics. 15, 433-442 (2006). https://doi.org/10.1093/hmg/ddi458
  4. Biederbick, A., Kern, H.F., and Elsasser, H.P., Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. European Journal of Cell Biology. 66, 3-14 (1995).
  5. Chen, H., Yan, X.J., Zhu, P., and Lin, J., Antioxidant activity and hepatoprotective potential of agaro-oligosaccharides in vitro and in vivo. Nutrition Journal. 5, 1-12 (2006). https://doi.org/10.1186/1475-2891-5-1
  6. Cho, I.H., Effects of Panax Ginseng in neurodegenerative disease. Journal of Ginseng Research. 36(4), 342-353 (2012). https://doi.org/10.5142/jgr.2012.36.4.342
  7. Ciechanover, A., Proteolysis: from the lysosome to ubiquitin and the proteasome. Nature Reviews Molecular Cell Biology. 6, 79-86 (2005). https://doi.org/10.1038/nrm1552
  8. Erlich, S., Alexandrovich, A., Shohami, E., and Pinkas-Kramarski, R., Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiololgy of Disease. 26, 86-93 (2007). https://doi.org/10.1016/j.nbd.2006.12.003
  9. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO Journal. 19, 5720-5728 (2000). https://doi.org/10.1093/emboj/19.21.5720
  10. Kim, Y.K., Ahn, J.H., and Lee, M.C., Src family kinase inhibitor PP2 induces lc3 conversion in a manner that is uncoupled from autophagy and increases apoptosis in multidrug-resistant cells. Biomolecules & Therapeutics. 20, 393-398 (2012). https://doi.org/10.4062/biomolther.2012.20.4.393
  11. Laidlaw, R.A., and Wylam, C.B., The structure of stachyose. Journal of the Chemical Society. 114, 567-571 (1953).
  12. Lim, Y., Son, D.J., Kim, Y.B., Hwang, B.Y., Yun, Y.P., and Hwang, S.Y., Effect of Yacon on platelet function in hypercholesterolemic rabbits. Biomolecules & Therapeutics. 19, 472-476 (2011). https://doi.org/10.4062/biomolther.2011.19.4.472
  13. Lucchesi, K.J. and Gosselin, R.E., Mechanism of L-glucose, raffinose, and inulin transport across intact blood-brain barriers. American Journal of Physiology. 258, H695-705 (1990).
  14. Matsukawa, N., Matsumoto, M., Chiji, H., and Hara, H., Oligosaccharide promotes bioavailability of a water-soluble flavonoid glycoside, aGrutin, in rats. Journal of Agricultural and Food Chemistry. 57, 1498- 1505 (2009). https://doi.org/10.1021/jf802390v
  15. Mizushima, N., Methods for monitoring autophagy. The International Journal of Biochemistry & Cell Biology. 36, 2491-2502 (2004). https://doi.org/10.1016/j.biocel.2004.02.005
  16. MunafO, D.B. and Colomb, M.I., A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. Journal of Cell Science. 114, 3619-3629 (2001).
  17. Nedelsky, N.B., Todd, P.K., and Taylor, J.P., Autophagy and the ubiquitinproteasome system: Collaborators in neuroprotection. Biochimica et Biophysica Acta. 1782, 691-699 (2008). https://doi.org/10.1016/j.bbadis.2008.10.002
  18. Neubauer, H., Meiler, J., Peti, W., and Griesinger, C., NMR structure determination of saccharose and raffinose by means of homo- and heteronuclear dipolar couplings. Helvetica Chimica Acta. 84, 243-258 (2001). https://doi.org/10.1002/1522-2675(20010131)84:1<243::AID-HLCA243>3.0.CO;2-F
  19. Pan, T., Kondo, S., Le, W., and Jankovic, J., The role of autophagylysosome pathway in neurodegeneration associated with Parkinson's disease. Brain. 131, 1969-1978 (2008). https://doi.org/10.1093/brain/awm318
  20. Pan, T., Kondo, S., Zhu, W., Xie, W., Jankovic, J., and Le, W., Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiology of Disease. 32, 16-25 (2008). https://doi.org/10.1016/j.nbd.2008.06.003
  21. Pangestui, R. and Kim, S.K., Neuroprotective properties of chitosan and its derivatives. Marine Drugs. 8, 2117-2128 (2010). https://doi.org/10.3390/md8072117
  22. Parker, E.M., Monopoli, A., Ongini, E., Lozza, G., and Babij, C.M., Rapamycin, but not FK506 and GPI-1046, increases neurite outgrowth in PC12 cells by inhibiting cell cycle progression. Neuropharmacology. 39, 1913-1919 (2000). https://doi.org/10.1016/S0028-3908(00)00028-9
  23. Qiao, Y., Bai, X.F., and Du, Y.G., Chitosan oligosaccharides protect mice from LPS challenge by attenuation of inflammation and oxidative stress. International Immunopharmacology. 11, 121-127 (2011). https://doi.org/10.1016/j.intimp.2010.10.016
  24. Rubinsztein, D.C., The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 443, 780-786 (2006). https://doi.org/10.1038/nature05291
  25. Taylor, J.P., Hardy, J., and Fischbeck, K.H., Toxic proteins in neurodegenerative disease. Science. 296, 1991-1995 (2002). https://doi.org/10.1126/science.1067122
  26. Webb, J.S., Thompson, L.S., James, S., Charlton, T., Tolker-Nielsen, T., Koch, B., Giveskov, M., and Kjelleberg, S., Cell death in Pseudomonas aeruginosa biofilm development. Journal of Bacteriology. 185, 4585-4592 (2003). https://doi.org/10.1128/JB.185.15.4585-4592.2003
  27. Wu, Y.T., Tan, H.L., Huang, Q., Kim, Y.S., Pan, N., Ong, W.Y., Liu, Z.G., Ong, C.N., and Shen, H.M., Autophagy plays a protective role during zVAD-induced necrotic cell death. Landes Bioscience. 4, 457-66 (2008).
  28. Zemke, D., Azhar, S., and Majid, A., The mTOR pathway as a potential target for the development of therapies against neurological disease. Drug News Perspect. 20, 495-499 (2007). https://doi.org/10.1358/dnp.2007.20.8.1157618
  29. Wakao, N., Imagama, S., Zhang, H., Tauchi, R., Muramoto, A., Natori, T., Takeshita, S., Ishiguro, N., Matsuyama, Y., and Kadomatsu, K., Hyaluronan oligosaccharides promote functional recovery after spinal cord injury in rats. 488, 299-304 (2011). https://doi.org/10.1016/j.neulet.2010.11.051