References
- Angeli, D., Levoni, P. and Barozzi, G.S. (2008), "Numerical predictions for stable buoyant regimes within a square cavity containing a heated horizontal cylinder", Int. J. Heat Mass Transfer, 51 (3-4), 553-565. https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.007
- Bonet, J. and Lok, T.S. (1999), "Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations", Comput. Meth. Appl. Mech. Eng., 180(1-2), 97-115. https://doi.org/10.1016/S0045-7825(99)00051-1
- Brookshaw, L. (1985), "A method of calculating radiative heat diffusion in particle simulations", Proceedings of the Astronomical Society of Australia, 6(2), 207-210. https://doi.org/10.1017/S1323358000018117
- Chandrasekhar, S. (1961), Hydrodynamic and Hydromagnetic Stability, Clarendon Press , Oxford, UK.
- Chern, M., Borthwick, A. and Taylor, R.E. (2006), "Pseudospectral element model for free surface viscous flows", Int. J. Numer. Meth. Heat Fluid Flow, 15(6), 517-554.
- Chorin, A.J. (1968), "Numerical solution of the Navier-Stokes equations", Math. Comput., 22(104), 745-762. https://doi.org/10.1090/S0025-5718-1968-0242392-2
- Cleary, P.W. (1998), "Modeling confined multi-material heat and mass flows using SPH", Appl. Math. Model., 22(12), 981-993. https://doi.org/10.1016/S0307-904X(98)10031-8
- Cleary, P.W. and Monaghan, J.J. (1999), "Conduction modelling using smoothed particle hydrodynamics", J. Comput. Phys., 148(1), 227-264. https://doi.org/10.1006/jcph.1998.6118
- Coutanceau, M. and Bouard, R. (1977), "Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow", J. Fluid Mech., 79(2), 231-256. https://doi.org/10.1017/S0022112077000135
- Cummins, S.J. and Rudman, M. (1999), "An SPH projection method", J. Comput. Phys., 152(2), 584-607. https://doi.org/10.1006/jcph.1999.6246
- Ghaddar, N.K. and Thiele, F. (1994), "Natural convection over a rotating cylindrical heat source in a rectangular enclosure", Numer. Heat Tr. A-Appl., 26(6), 701-717. https://doi.org/10.1080/10407789408956018
- Gingold, R.A. and Monaghan, J.J. (1977), "Smoothed particle hydrodynamics-theory and application to non-spherical stars", Mon. Not. R. Astron. Soc., 181, 375-389. https://doi.org/10.1093/mnras/181.3.375
- Goda, K. (1979), "A multistep technique with implicit difference schemes for calculating two-or threedimensional cavity flows", J. Comput. Phys., 30(1), 76-95. https://doi.org/10.1016/0021-9991(79)90088-3
- Gray, D.D. and Giorgini, A. (1976), "The validity of the Boussinesq approximation for liquids and gases", Int. J. Heat Mass Transfer, 19(5), 545-551. https://doi.org/10.1016/0017-9310(76)90168-X
- Hu, X.Y. and Adams, N.A. (2007), "An incompressible multi-phase SPH method", J. Comput. Phys., 227(1), 264-278. https://doi.org/10.1016/j.jcp.2007.07.013
- Kim, J. and Choi, H. (2004), "An immersed-boundary finite-volume method for simulation of heat transfer in complex geometries", J. Mech. Sci. Tech., 18(6), 1026-1035.
- Kum, O., Hoover, W.G. and Posch, H.A. (1995), "Viscous conducting flows with smooth-particle applied mechanics", Phys. Review E, 52(5), 4899-4908. https://doi.org/10.1103/PhysRevE.52.4899
- Lastiwka, M., Quinlan, N.J. and Basa, M. (2009), "Permeable and non-reflecting boundary conditions in SPH", Int. J. Numer. Meth. Fluid., 61(7), 709-724. https://doi.org/10.1002/fld.1971
- Lee, E.S., Moulinec, C., Xu, R. and Violeau, D. (2008), "Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method", J. Comput. Phys., 227(18), 8417-8436. https://doi.org/10.1016/j.jcp.2008.06.005
- Liu, G.R. and Liu, M.B. (2003), Smoothed Particle Hydrodynamics a Meshfree Particle Method, World Scientific, Singapore.
- Liu, M.B. and Liu, G.R. (2010), "Smoothed particle hydrodynamics (SPH): an overview and recent developments", Arch. Comput. Meth. Eng., 17(1), 25-76. https://doi.org/10.1007/s11831-010-9040-7
- Lucy, L.B. (1977), "A numerical approach to the testing of the fission hypothesis", Astronom. J., 82(12), 1013-1024. https://doi.org/10.1086/112164
- Monaghan, J.J. (1992), "Smoothed particle hydrodynamics", Ann. Review Astronom. Astrophys., 30, 543-574. https://doi.org/10.1146/annurev.aa.30.090192.002551
- Monaghan, J.J. (2012), "Smoothed particle hydrodynamics and its diverse applications", Ann. Review Fluid Mech., 44, 323-346. https://doi.org/10.1146/annurev-fluid-120710-101220
- Monaghan, J.J. (1989), "On the problem of penetration in particle methods", J. Comput. Phys., 82(1), 1-15. https://doi.org/10.1016/0021-9991(89)90032-6
- Morris, J.P., Fox, P.J. and Zhu, Y. (1997), "Modeling low Reynolds number incompressible flowsusing SPH", J. Comput. Phys., 136(1), 214-226. https://doi.org/10.1006/jcph.1997.5776
- Moukalled, F. and Acharya, S. (1996), "Natural convection in the annulus between concentric horizontalcircular and square cylinders", J. Thermophys. Heat Transfer, 10(3), 524-531. https://doi.org/10.2514/3.820
- Noor, D.Z., Chern, M.J. and Horng, T.L. (2009), "An immersed boundary method to solve fluid-solidinteraction problems", Comput. Mech., 44(4), 447-453. https://doi.org/10.1007/s00466-009-0384-5
- Oger, G. et al. (2007), "An improved SPH method: Towards higher order convergence", J. Comput. Phys., 225(2), 1472-1492. https://doi.org/10.1016/j.jcp.2007.01.039
- Ouertatani, N., Ben Cheikh, N., Ben Beya, B. and Lili, T. (2008), "Numerical simulation of two-dimensional Rayleigh-Benard convection in an enclosure", Comptes Rendus Mecanique, 336(5), 464-470. https://doi.org/10.1016/j.crme.2008.02.004
- Pacheco-Vega, A., Pacheco, J.R. and Rodic, T. (2007), "A general scheme for the boundary conditionsin convective and diffusive heat transfer with immersed boundary methods", J. Heat Transfer, 129(11), 1506-1516. https://doi.org/10.1115/1.2764083
- Pan, D. (2006), "An immersed boundary method on unstructured cartesian meshes for incompressible flows with heat transfer", Numer. Heat Transfer, 49(3), 277-297. https://doi.org/10.1080/10407790500290709
- Peng, Y., Chew, Y.T. and Shu, C. (2003), "Numerical simulation of natural convection in a concentricannulus between a square outer cylinder and a circular inner cylinder using the Taylor-series-expansion and least-squares-based lattice Boltzmann method", Phys. Review E, 67(2), 026701. https://doi.org/10.1103/PhysRevE.67.026701
- Rosenfeld, M., Kwak, D. and Vinokur, M. (1991), "A fractional step solution method for the unsteady incompressible Navier-Stokes equations in generalized coordinate systems", J. Comput. Phys., 94(1), 102-137. https://doi.org/10.1016/0021-9991(91)90139-C
- Shao, S. and Lo, E.Y. (2003), "Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface", Adv. Water Resour., 26(7), 787-800. https://doi.org/10.1016/S0309-1708(03)00030-7
- Shu, C. and Zhu, Y. (2002), "Efficient computation of natural convection in a concentric annulus between an outer square cylinder and an inner circular cylinder", Int. J. Numer. Meth. Fluids, 38(5), 429-445. https://doi.org/10.1002/fld.226
- Sigalotti, L., Klapp, J., Sira, E., Meleán, Y. and Hasmy, A. (2003), "SPH simulations of time-dependent Poiseuille flow at low Reynolds numbers", J. Comput. Phys., 191(2), 622-638. https://doi.org/10.1016/S0021-9991(03)00343-7
- Szewc, K., Pozorski, J. and Tanière, A. (2011), "Modeling of natural convection with smoothedparticle hydrodynamics: Non-Boussinesq formulation", Int. J. Heat Mass Transfer, 54(23-24), 4807-4816. https://doi.org/10.1016/j.ijheatmasstransfer.2011.06.034
- Temam, R. (1968), "Une methode d'approximation de la solution des 'equations de Navier-Stokes", Bull. Soc. Math. Fr., 96, 115-152.
- Xu, R., Stansby, P. and Laurence, D. (2009), "Accuracy and stability in incompressible SPH (ISPH)based on the projection method and a new approach", J. Comput. Phys., 228(18), 6703-6725. https://doi.org/10.1016/j.jcp.2009.05.032
Cited by
- Smoothed Particle Hydrodynamics Modeling of Natural Convection Around a Heated Horizontal Cylinder: A Comparison With Experiments vol.143, pp.4, 2013, https://doi.org/10.1115/1.4049495