DOI QR코드

DOI QR Code

Empennage Design of Solar-Electric Powered High Altitude Long Endurance Unmanned Aerial Vehicle

고고도 장기체공 전기 동력 무인기의 꼬리 날개 설계

  • Received : 2013.06.05
  • Accepted : 2013.08.22
  • Published : 2013.09.01

Abstract

KARI is developing a solar-electric powered HALE UAV(EAV-3). For demonstrating the technology, EAV-2H, a down-scaled version of EAV-3, is developed and after EAV-2H's initial flight test, the directional stability and control need to be improved. Thus, the vertical tail and rudder of EAV-2H are redesigned with Advanced Aircraft Analysis(AAA). Size of the rudder is increased from mean chord ratio of rudder to vertical tail, $C_r/C_v(%)=30$ to $C_r/C_v(%)=60$ and size of the vertical tail is reduced 15%. As a result, the directional control to side wind($v_1$) is improved to sideslip angle, ${\beta}(deg)=25^{\circ}$ and $v_1(m/sec)=3.54$. Also, variation of airplane side force coefficient with sideslip angle ($C_{y_{\beta}}$) and variation of airplane side force coefficient with dimensionless rate of change of yaw rate ($C_{y_r}$) are reduced 15% and 22%, respectively to minimize the effect of side wind. The empennage design of EAV-2H is verified with flight tests and applied to design of KARI's solar-electric-powered EAV-3.

한국항공우주연구원(KARI)은 고고도 전기추진 장기체공 무인기(EAV-3)를 개발하고 있는 중 이다. 우선 고고도 상승 기술 시연을 위한 축소형 비행체 EAV-2H를 개발하였고 EAV-2H로 초도 비행시험을 수행한 결과 측풍에 대한 방향 안정성 및 조종성의 향상이 요구되므로 Advanced Aircraft Analysis(AAA)를 이용한 수직 꼬리날개와 방향타의 재설계를 진행하였다. 방향 조종성을 개선하기위해 방향타의 크기를 기존의 평균 방향타 시위대 수직 꼬리날개 시위 $C_r/C_v(%)=30$$C_r/C_v(%)=60$로 늘려 EAV-2H가 가지는 측풍에 대한 방향 조종성(${\beta}(deg)=25^{\circ}$, $v_1(m/sec)=3.54$)을 개선하였다. 또한, 측풍에 의해 발생하는 측력(side force)의 영향을 최소화하기위해 EAV-2H의 수직미익 크기를 기존 대비 15% 줄여(최소한의 방향 안정성 확보, $Cn_{\beta}=0.0588rad^{-1}$), $C_{y_{\beta}}$는 15% $C_{y_r}$는 22% 감소시킴으로써 측풍이 EAV-2H에 미치는 영향을 최소화 하였다. 설계된 EAV-2H의 꼬리날개의 성능은 비행 시험을 통해 검증하였고 그 결과를 적용하여 고고도 장기체공 전기추진 무인기(EAV-3)의 꼬리날개를 설계하였다.

Keywords

References

  1. Romeo, G., Frulla, G., Cestino, E., and Corsino, G., "HELIPLAT: Design, Aerodynamic and Structural Analysis of Long-Endurance, Solar-Powered Stratospheric Platform," Journal of Aircraft, vol. 41, No. 6, Nov.-Dec. 2004.
  2. Oodo, M., Tsuli, H., and Miura, R., "Experiments on IMT-2000 Using Unmanned Solar Powered Aircraft at an Altitude of 20 km," IEEE Transactions on Vehicular Technology, vol. 54, No. 4, July 2005.
  3. Nickol, C., Guynn, M., Kohout, L., and Ozoroski, T., "High Altitude Long Endurance UAV Analysis of Alternatives and Technology Requirements Development," NASA/TP-2007 -214861, March 2007.
  4. Youngblood, J., Talay, T., and Pegg, R., "Design of Long Endurance Unmanned Airplanes Incorporating Solar and Fuel Cell Propulsion," AIAA 84-1430, June 1984.
  5. Atreya, S., Mata, M., Jones, R., and Kohout, L., "Power System Comparisons for a High Altitude Long Endurance (HALE) Remotely Operated Aircraft (ROA)," AIAA 2005-7401, September 2005.
  6. Jin, W., Lee, Y., Kim, C., Ahn, S., and Lee, D., "Computational Analysis of Aerodynamic Performance of a Small-Scale Electric Aerial Vehicle, "Proceeding of the 2010 Korean Society for Aeronautical & Space Sciences (KSAS) Fall Conference, vol. 1., pp. 473-476.
  7. Korea Aerospace Research Institute, January 2011, "System and Operational Technology Research for Electric Airplane (I)"
  8. Jin, W., Lee, Y., Kim, C., and Ahn, S., "Initial Design and Computational Aerodynamic Analysis of a Medium Electric Aerial Vehicle," Proceeding of the 2011 Korean Society for Aeronautical & Space Sciences (KSAS) Spring Conference, vol. 1., pp. 850-855.
  9. Korea Aerospace Research Institute, January 2012, "System and Operational Technology Research for Electric Airplane (II)"
  10. Advanced Aircraft Analysis Software Package(AAA), Ver. 3.2, DARCorporation, Lawrence, KS, USA.
  11. J. Roskam, 2004, "Airplane Design Part III: Layout Design of Cockpit, Fuselage, Wing and Empennage: Cutways and Inboard Profiles," DARCorp., Lawrence, KS, USA.
  12. J. Roskam, 2004, "Airplane Design Part VII: Determination of Stability, Control and Performance Characteristics: FAR and Military Requirements," DARCorp., Lawrence, KS, USA.

Cited by

  1. Aerodynamic Design of the Solar-Powered High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) vol.17, pp.1, 2016, https://doi.org/10.5139/IJASS.2016.17.1.132