DOI QR코드

DOI QR Code

택란 메탄올 추출물에 의한 인체 폐암 세포주 A549의 G1 arrest 유발

Induction of G1 Arrest by Methanol Extract of Lycopus lucidus in Human Lung Adenocarcinoma A549 Cells

  • 박현진 (동의대학교 블루바이오 소재개발 센터) ;
  • 진수정 (동의대학교 블루바이오 소재개발 센터) ;
  • 오유나 (동의대학교 블루바이오 소재개발 센터) ;
  • 윤승근 (동의대학교 자연과학대학 생명응용학과) ;
  • 이지영 (동의대학교 블루바이오 소재개발 센터) ;
  • 권현주 (동의대학교 블루바이오 소재개발 센터) ;
  • 김병우 (동의대학교 블루바이오 소재개발 센터)
  • Park, Hyun-Jin (Blue-Bio Industry RIC, Dong-Eui University) ;
  • Jin, Soojung (Blue-Bio Industry RIC, Dong-Eui University) ;
  • Oh, You Na (Blue-Bio Industry RIC, Dong-Eui University) ;
  • Yun, Seung-Geun (Department of Life Science and Biotechnology, College of Natural Sciences, Dong-Eui University) ;
  • Lee, Ji-Young (Blue-Bio Industry RIC, Dong-Eui University) ;
  • Kwon, Hyun Ju (Blue-Bio Industry RIC, Dong-Eui University) ;
  • Kim, Byung Woo (Blue-Bio Industry RIC, Dong-Eui University)
  • 투고 : 2013.07.10
  • 심사 : 2013.09.17
  • 발행 : 2013.09.30

초록

본 연구에서는 인체 폐암 세포인 A549를 사용하여 택란 메탄올 추출물의 항암활성과 그 분자적 기전에 관하여 연구하였다. 먼저 택란 추출물이 A549의 세포증식에 미치는 영향을 알아본 결과 처리 농도 및 시간 의존적으로 A549의 성장이 저해되었으며, 세포 주기 변화를 분석한 결과 강력한 G1 arrest가 유도되는 것을 확인하였다. 이러한 택란 추출물에 의한 G1 arrest는 세포주기 조절 단백질인 Cyclin D1, Cyclin E 및 Cyclin-dependent kinase인 CDK2, CDK4, CDK6의 발현 감소와 연관되어 있었다. 또한 택란 추출물에 의한 CDK/Cyclin complex의 발현 저해는 DNA 손상에 의해 활성화되는 CHK2의 활성화 형태인 p-CHK2의 발현 증가에 따른 CDK 활성화 효소인 Cdc25A phosphatase의 발현 억제에 의해 나타나는 결과로 사료된다. 반면 종양억제유전자인 p53 및 CDK 억제제인 p21과 p27의 발현량은 증가되지 않았다. 이러한 결과들로부터 택란 추출물은 DNA damage에 의한 ATM/CHK2/Cdc25A/CDK2 pathway를 통해 A549의 G1 arrest를 유도하여 세포의 증식을 억제할 것으로 판단되며, 이때 택란 추출물에 의해 유도되는 G1 arrest는 p53 비의존적인 경로일 것으로 사료된다. 본 연구결과는 택란이 Cdc25A를 target으로 하는 새로운 항암활성 소재로서 사용될 수 있는 가능성을 시사한다. 또한 본 연구결과는 택란 추출물의 세포주기 조절에 의한 항암기전을 이해하고 향후 지속적 연구를 하는 데 있어서 귀중한 기초자료로 사용될 수 있을 것이다.

Induction of G1 Arrest by Methanol Extract of Lycopus lucidus in Human Lung Adenocarcinoma A549 Cells Lycopus lucidus, a herbaceous perennial, is used as a traditional remedy in East Asia, including China and Korea. It has been reported that L. lucidus has anti-allergic effects, inhibitory effects on cholesterol acyltransferase in high glucose-induced vascular inflammation, and anti-proliferative effects in human breast cancer cells. However, the molecular mechanisms of the anti-cancer effects of L. lucidus have not yet been fully determined. In this study, we evaluated the anti-cancer effect and the mechanism of action of L. lucidus in human lung adenocarcinoma A549 cells using methanol extracts of L. lucidus (MELL). MELL treatment showed cytotoxic activity in a dose-dependent manner and induced G1 arrest in A549 cells. The induction of G1 arrest by MELL was associated with the up-regulation of phospho-CHK2 and the down-regulation of Cdc25A phosphatase. In addition, MELL treatment induced decreased expression of G1/S transition-related proteins, including CDK2, CDK4, CDK6, cyclin D1 and cyclin E. MELL also regulated the mRNA expression of CDK2 and cyclin E. On the other hand, the expression of p53 and the cyclin-dependent kinase inhibitor p21 was not induced by MELL. Collectively, these results suggest that MELL may exert an anti-cancer effect by cell cycle arrest at G1 phase through the ATM/CHK2/Cdc25A/CDK2 pathway in A549 cells.

키워드

참고문헌

  1. Bartek, J. and Lukas, J. 2001. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett 490, 117-122. https://doi.org/10.1016/S0014-5793(01)02114-7
  2. Bernardi, R., Liebermann, D. A. and Hoffman, B. 2000. Cdc25A stability is controlled by the ubiquitin-proteasome pathway during cell cycle progression and terminal differentiation. Oncogene 19, 2447-2454. https://doi.org/10.1038/sj.onc.1203564
  3. Bertero, T., Gastaldi, C., Bourget-Ponzio, I., Mari, B., Meneguzzi, G., Barbry, P., Ponzio, G. and Rezzonico, R. 2013. Cdc25A targeting by miR-483-3p decreases CCNDCDK4/ 6 assembly and contributes to cell cycle arrest. Cell Death Differ 20, 800-811. https://doi.org/10.1038/cdd.2013.5
  4. Biomberg, I. and Hoffmann, I. 1999. Ectopic expression of Cdc25A accelerates the G(1)/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Mol Cell Biol 19, 6183-6194.
  5. But, P. P. H., Kimura, T., Sung, C. K. and Han, B. H. 1997. International collation of traditional folk medicine, pp. 137, Vol. 3, World scientific: New Jersey, USA.
  6. Coulonval, K., Nockstaele, L., Paternot, S. and Roger, P. P. 2003. Phosphorylations of cyclin-dependent kinase 2 revisited using two-dimensional gel electrophoresis. J Biol Chem 278, 52052-52060. https://doi.org/10.1074/jbc.M307012200
  7. Donzelli, M. and Draetta, G. F. 2003. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep 4, 671-677. https://doi.org/10.1038/sj.embor.embor887
  8. Dorai, T. and Aggarwal, B. B. 2004. Role of chemopreventive agents in cancer therapy. Cancer Lett 215, 129-140. https://doi.org/10.1016/j.canlet.2004.07.013
  9. Eymin, B., Claverie, P., Salon, C., Leduc, C., Col, E., Brambilla, E., Khochbin, S. and Gazzeri, S. 2006. p14ARF activates a Tip60-dependent and p53-independent ATM/ATR/CHK pathway in response to genotoxic stress. Mol Cell Biol 26, 4339-4350. https://doi.org/10.1128/MCB.02240-05
  10. Falck, J., Mailand, N., Syljuasen, R. G., Bartek, J. and Lukas, J. 2001. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410, 842-847. https://doi.org/10.1038/35071124
  11. Galaktionov, K., Lee, A. K., Eckstein, J., Draetta, G., Meckler, J., Loda, M. and Beach, D. 1995. CDC25 phosphatases as potential human oncogenes. Science 269, 1575-1577. https://doi.org/10.1126/science.7667636
  12. Gasparotto, D., Maestro, R., Piccinin, S., Vukosavljevic, T., Barzan, L., Sulfaro, S. and Boiocchi, M. 1997. Overexpression of CDC25A and CDC25B in head and neck cancers. Cancer Res 57, 2366-2368.
  13. Guo, W. Q., He, Z. Y. and Zhang, Q. 2013. The anti-tumour effect of ethanol extract of rhizoma atractylodis on lung cancer A549 cells. Biotechnology 23, 73-76.
  14. Hartwell, L. H. and Kastan, M. B. 1994. Cell cycle control and cancer. Science 266, 1821-1828. https://doi.org/10.1126/science.7997877
  15. Hashimoto, O., Ueno, T., Kimura, R., Ohtsubo, M., Nakamura, T., Koga, H., Torimura, T., Uchida, S., Yamashita, K. and Sata, M. 2003. Inhibition of proteasome-dependent degradation of Wee1 in G2-arrested Hep3B cells by TGF beta1. Mol Carcinog 36, 171-182. https://doi.org/10.1002/mc.10111
  16. Hoeijmakers, J. H. 2001. Genome maintenance mechanisms for preventing cancer. Nature 411, 366-374. https://doi.org/10.1038/35077232
  17. Ito, Y., Yoshida, H., Uruno, T., Takamura, Y., Miya, A., Kuma, K. K. and Miyauchi, A. 2004. Expression of cdc25A and cdc25B phosphatase in breast carcinoma. Breast Cancer 11, 295-300. https://doi.org/10.1007/BF02984552
  18. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E. and Forman, D. 2011. Global cancer statistics. CA Cancer J Clin 61, 69-90. https://doi.org/10.3322/caac.20107
  19. Jin, P., Gu, Y. and Morgan, D. O. 1996. Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J Cell Biol 134, 963-970. https://doi.org/10.1083/jcb.134.4.963
  20. Kim, D. Y. and Ghil, S. H. 2009. Effect of Lycopus lucidus Trucz on cell growth of human breast cancer cells, MCF-7. J Exp Biomed Sci 15, 147-152.
  21. Kim, W. H., Kim, J. W., Jang, S. M., Song, K. H., Ham, S. W. and Choi, K. H. 2007. Naphthoquinone Analog-induced G1 arrest is mediated by cdc25A inhibition and p53-independent p21 induction in human hepatocarcinoma cells. Integr Biosci 11, 9-15. https://doi.org/10.1080/17386357.2007.9647310
  22. Lee, Y. J., Kang, D. G., Kim, J. S. and Lee, H. S. 2008. Lycopus lucidus inhibits high glucose-induced vascular inflammation in human umbilical vein endothelial cells. Vascul Pharmacol 48, 38-46. https://doi.org/10.1016/j.vph.2007.11.004
  23. Mailand, N., Falck, J., Lukas, C., Syljuasen, R. G., Welcker, M., Bartek, J. and Lukas, J. 2000. Rapid destruction of Cdc25A in response to DNA damage. Science 288, 1425-1429. https://doi.org/10.1126/science.288.5470.1425
  24. Nalca, A. and Rangnekar, V. M. 1998. The G1-phase growtharresting action of interleukin-1 is independent of p53 and p21/WAF1 function. J Biol Chem 273, 30517-30523. https://doi.org/10.1074/jbc.273.46.30517
  25. Neergheen, V. S., Bahorun, T., Taylor, E. W., Jen, L. S. and Aruoma, O. I. 2010. Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention. Toxicology 278, 229-241. https://doi.org/10.1016/j.tox.2009.10.010
  26. Nilsson, I. and Hoffmann, I. 2000. Cell cycle regulation by the Cdc25 phosphatase family. Prog Cell Cycle Res 4, 107-114.
  27. O’Connor, P. M. 1997. Mammalian G1 and G2 phase checkpoints. Cancer Surv 29, 151-182.
  28. Park, J. H. 2004. Medicinal plants of Korean, pp. 1171-1173, Shinil Books: Seoul, Korea.
  29. Polewska, J., Skwarska, A., Augustin, E. and Konopa, J. 2013. DNA-damaging imidazoacridinone C-1311 induces autophagy followed by irreversible growth arrest and senescence in human lung cancer cells. J Pharmacol Exp Ther 346, 393-405. https://doi.org/10.1124/jpet.113.203851
  30. Ryan, K. M., Phillips, A. C. and Vousden, K. H. 2001. Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol 13, 332-337. https://doi.org/10.1016/S0955-0674(00)00216-7
  31. Shin, T. Y., Kim, S. H., Suk, K. H., Ha, J. H., Kim, I. K., Lee, M. G., Jun, C. D., Kim, S. Y., Lim, J. P., Eun, J. S., Shin, H. Y. and Kim, H. M. 2005. Anti-allergic effects of Lycopus lucidus on mast cell-mediated allergy model. Toxicol Appl Pharmacol 209, 255-262. https://doi.org/10.1016/j.taap.2005.04.011
  32. Vogelstein, B., Lane, D. and Levine, A. J. 2000. Surfing the p53 network. Nature 408, 307-310. https://doi.org/10.1038/35042675
  33. Woo, E. R. and Piao, M. S. 2004. Antioxidative constituents from Lycopus lucidus. Arch Pharmacal Res 27, 173-176. https://doi.org/10.1007/BF02980102
  34. Wu, W., Fan, Y. H., Kemp, B. L., Walsh, G. and Mao, L. 1998. Overexpression of cdc25A and cdc25B is frequent in primary non-small cell lung cancer but is not associated with overexpression of c-myc. Cancer Res 58, 4082-4085.
  35. Xu, X., Yamamoto, H., Liu, G., Ito, Y., Ngan, C. Y., Kondo, M., Nagano, H., Dono, K., Sekimoto, M. and Monden, M. 2008. CDC25A inhibition suppresses the growth and invasion of human hepatocellular carcinoma cells. Int J Mol Med 21, 145-152.
  36. Xu, X., Yamamoto, H., Sakon, M., Yasui, M., Ngan, C. Y., Fukunaga, H., Morita, T., Ogawa, M., Nagano, H., Nakamori, S., Sekimoto, M., Matsuura, N. and Monden, M. 2003. Overexpression of CDC25A phosphatase is associated with hypergrowth activity and poor prognosis of human hepatocellular carcinomas. Clin Cancer Res 9, 1764-1772.
  37. Yun, Y., Han, S., Park, E., Yim, D., Lee, S., Lee, C. K., Cho, K. and Kim, K. 2003. Immunomodulatory activity of betulinic acid by producing proinflammatory cytokines and activation of macrophages. Arch Pharmacal Res 26, 1087-1095. https://doi.org/10.1007/BF02994763
  38. Zhang, W., Grasso, L., McClain, C. D., Gambel, A. M., Cha, Y., Travali, S., Deisseroth, A. B. and Mercer, W. E. 1995. p53-independent induction of WAF1/CIP1 in human leukemia cells is correlated with growth arrest accompanying monocyte/macrophage differentiation. Cancer Res 55, 668-674.
  39. Zhou, B. B. and Elledge, S. J. 2000. The DNA damage response: putting checkpoints in perspective. Nature 408, 433-439. https://doi.org/10.1038/35044005