DOI QR코드

DOI QR Code

Analysis of Microsatellite Loci for Swimming Crab Portunus trituberculatus Populations in the Korean Side of the Yellow Sea

서해안에서 채집된 꽃게(Portunus trituberculatus) 집단에 대한 microsatellite 좌위의 분석

  • Received : 2013.09.05
  • Accepted : 2013.09.25
  • Published : 2013.09.30

Abstract

The swimming crab, Portunus trituberculatus, inhabits seafloor habitats containing sand or pebbles and is widely distributed throughout the world. The present study investigated genetic polymorphisms of 10 microsatellites in 281 samples of P. trituberculatus collected from four locations along the coastal water of the Korean side of the Yellow Sea (Yeonggwang, Taean, Sorea, and Yeonpyeong-do Island). The number of alleles per locus ranged from 50 to 129, with a mean of 69.5. The observed and expected hetrozygosity varied from 0.111 to 1.000 and from 0.609 to 0.979, respectively. The inbreeding coefficients (Fis) varied among the loci from -0.0207 to 0.8175. The genetic differentiation (Fst) was less than 0.05 (range 0.0020-0.0124). Therefore, the four groups of P. trituberculatus appeared to exhibit little genetic differentiation. The lack of differentiation was confirmed in a phylogenetic tree constructed by the unweighted pair group method with the arithmetic average (UPGMA). The hypervariation between the populations and the lack of genetic differentiation may reflect active gene flow among the Yellow Sea populations and the absence of geographical boundaries. The highly polymorphic microsatellite loci will be useful for molecular and phylogenetic studies, as well as stock management, of swimming crab, which is an important fishery resource.

꽃게(Portunus trituberculatus)는 세계적으로 넓게 분포하는 갑각류로 모래나 돌멩이가 있는 해저에 서식한다. 본 연구는 서해의 4개 지점(영광, 태안, 소래, 연평도)에서 채집된 P. trituberculatus 281 개체에 대해 10 종류 microsatellite 좌위의 유전적 다형성을 조사하였다. 좌위당 대립유전자 수는 50-129개로 평균 69.5개였으며, 관측 및 예상 이형접합도는 각각 0.111-1.000 및 0.609-0.979 범위에 있었다. 좌위별 근친계수((Fis)는 -0.0207에서 0.8175 범위였다. 유전적 분화도(Fst)는 0.05보다 낮게 나타났는데, 이것은 4 꽃게 간의 유전적 분화(genetic differentiation)가 매우 낮은 이루어진 것으로 추정하게 한다. UPGMA을 이용한 계통도 작성에서도 4 그룹 간의 유전적 거리는 매우 가깝다는 결과를 얻을 수 있었다. 매우 높은 다형성과 집단간의 낮은 유전적 분화는 서해안의 꽃게 집단은 활발한 유전적 흐름(gene flow)이 일어나며, 그룹간 지리적 경계가 없음을 제시한다

Keywords

References

  1. An, H. S., Lee, J. H., Noh, J. K., Kim, H. C., Park, C. J., Min, B. H., and Myeong, J. I. 2010. Ten new microsatellite markers in cutlassfish Trichiurus lepturus derived from an enriched genomic library. Anim Cells Sys 14, 169-174. https://doi.org/10.1080/19768354.2010.504347
  2. Blouin, M. S., Parsons, M., Lacaille, V. and Lotz, S. 1996. Use of microsatellite loci to classify individuals by relatedness. Mol Ecol 5, 393-401. https://doi.org/10.1046/j.1365-294X.1996.00094.x
  3. Bowman, T. E. and Abele, L. G. 1982. Classification of the recent Crustacea, pp. 1-92. In: Vol. 1: Systematics, the Fossil Record, and Biogeography, L.G. Abele (ed.), The Biology of Crustacea. Academic Press, New York, NY.
  4. Brandstrom, M. and Ellegren, H. 2008. Genome-wide analysis of microsatellite polymorphism in chicken circumventing the ascertainment bias. Genome Res 18, 881-887. https://doi.org/10.1101/gr.075242.107
  5. Cho, E. M., Min, G. S., Kanwal, S., Hyun, Y. S., Park, S. W. and Chung, K. W. 2009. Phylogenetic analysis of mitochondrial DNA control region in the swimming crab, Portunus trituberculatus. Anim Cells Sys 13, 305-314. https://doi.org/10.1080/19768354.2009.9647223
  6. Cui, Z., Liu, Y., Wang, H., Wu, D., Luan, W., Tan, F. and Huang, M. 2012. Isolation and characterization of microsatellites in Portunus trituberculatus. Conservation Genet Resour 4, 251-255. https://doi.org/10.1007/s12686-011-9518-0
  7. Ellegren, H. 2004. Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5, 435-445. https://doi.org/10.1038/nrg1348
  8. Goldstein, D. B., Linares, A. R., Cavalli-Sforza, L. L. and Feldman, M. W. 1995. An evaluation of genetic distances for use with microsatellite loci. Genetics 139, 463-471.
  9. Imai, H., Fujii, Y. and Karakawa, J. 1999. Analysis of the population structure of the swimming crab, Portunus trituberculatus in the coastal waters of Okayama Prefecture, by RFLPs in the whole region of mitochondrial DNA. Fish Sci 65, 655-656. https://doi.org/10.2331/suisan.65.655
  10. Lee, H. J., Lee, D. H., Yoon, S. H., Kim, D. H., Kim, S. G., Hyun, Y. S., Min, G. S. and Chung, K. W. 2013. Characterization of 20 microsatellite loci by multiplex PCR in swimming crab, Portunus trituberculatus. Genes Genom 35, 77-85. https://doi.org/10.1007/s13258-013-0062-z
  11. Liu, Y., Liu, R., Ye, L., Liang, J., Xuan, F. and Xu, Q. 2009. Genetic differentiation between populations of swimming crab Portunus trituberculatus along the coastal waters of the East China Sea. Hydrobiologia 618, 125-137. https://doi.org/10.1007/s10750-008-9570-2
  12. Madsen, B. E., Villesen, P. and Wiuf, C. 2010. Short tandem repeats and genetic variation. Methods Mol Biol 628, 297-306. https://doi.org/10.1007/978-1-60327-367-1_16
  13. Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43, 223-225. https://doi.org/10.2307/2409177
  14. Rohlf, F. J. 2002. NTSYSPC: Numerical Taxonomy System, ver.2.1. Exeter Publishing, Ltd. Setauket, New York.
  15. Rousset, F. 2008. GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8, 103-106. https://doi.org/10.1111/j.1471-8286.2007.01931.x
  16. Schuelke, M. 2000. An economic method for the fluorescent labeling of PCR fragment. Nat Biotechnol 18, 233-234. https://doi.org/10.1038/72708
  17. Sekino, M., Hara, M. and Taniguchi, N. 2002. Loss of microsatellite and mitochondrial DNA variation in hatchery strains of Japanese flounder Paralichthys olivaceus. Aquaculture 213, 101-122. https://doi.org/10.1016/S0044-8486(01)00885-7
  18. Suji, K. K., Biji, K. R., Poornima, R., Prince, K. S., Amudha, K., Kavitha, S., Mankar, S. and Babu, R. C. 2012. Mapping QTLs for plant phenology and production traits using Indica rice (Oryza sativa L.) lines adapted to rainfed environment. Mol Biotechnol 52, 151-160. https://doi.org/10.1007/s12033-011-9482-7
  19. Tanksley, S. D., Grandillo, S., Fulton, T. M., Zamir, D., Eshed, Y., Petiard, V., Lopes, J. and Beck-Bunn, T. 1996. Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92, 213-224. https://doi.org/10.1007/BF00223378
  20. Tautz, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17, 6463-6471. https://doi.org/10.1093/nar/17.16.6463
  21. van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. and Shipley, P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4, 535-538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
  22. Weir, B. S. and Cockerham, C. C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358-1370. https://doi.org/10.2307/2408641
  23. Xu, Q., Liu, R. and Liu, Y. 2009. Genetic population structure of the swimming crab, Portunus trituberculatus in the East China Sea based on mtDNA 16S rRNA sequences. J Exp Mar Biol Ecol 371, 121-129. https://doi.org/10.1016/j.jembe.2009.01.014
  24. Xu, Q. and Liu, R. 2011. Development and characterization of microsatellite markers for genetic analysis of the swimming crab, Portunus trituberculatus. Biochem Genet 49, 202-212. https://doi.org/10.1007/s10528-010-9399-z
  25. Yoo, S. Y., Cho, N. S., Park, M. J., Seong, K. M., Hwang, J. H., Song, S. B., Han, M. S., Lee, W. T. and Chung, K. W. 2011. A large population genetic study of 15 autosomal short tandem repeat loci for establishment of Korean DNA profile database. Mol Cells 32, 15-19. https://doi.org/10.1007/s10059-011-2288-4

Cited by

  1. Genetic population structure in the swimming crab, Portunus trituberculatus and its implications for fishery management pp.1469-7769, 2019, https://doi.org/10.1017/S0025315418000796