DOI QR코드

DOI QR Code

Efficient Transmission of Scalable Video Streams Using Dual-Channel Structure

듀얼 채널 구조를 이용한 Scalable 비디오(SVC)의 전송 성능 향상

  • 유호민 (LG전자 CTO부문 컨버전스연구소) ;
  • 이재면 (한양대학교 컴퓨터공학과) ;
  • 박주영 (한양대학교 컴퓨터공학과) ;
  • 한상화 (한양대학교 컴퓨터공학과) ;
  • 강경태 (한양대학교 컴퓨터공학과)
  • Received : 2013.05.14
  • Accepted : 2013.07.12
  • Published : 2013.09.30

Abstract

During the last decade, the multitude of advances attained in terminal computers, along with the introduction of mobile hand-held devices, and the deployment of high speed networks have led to a recent surge of interest in Quality of Service (QoS) for video applications. The main difficulty is that mobile devices experience disparate channel conditions, which results in different rates and patterns of packet loss. One way of making more efficient use of network resources in video services over wireless channels with heterogeneous characteristics to heterogeneous types of mobile device is to use a scalable video coding (SVC). An SVC divides a video stream into a base layer and a single or multiple enhancement layers. We have to ensure that the base layer of the video stream is successfully received and decoded by the subscribers, because it provides the basis for the subsequent decoding of the enhancement layer(s). At the same time, a system should be designed so that the enhancement layer(s) can be successfully decoded by as many users as possible, so that the average QoS is as high as possible. To accommodate these characteristics, we propose an efficient transmission scheme which incorporates SVC-aware dual-channel repetition to improve the perceived quality of services. We repeat the base-layer data over two channels, with different characteristics, to exploit transmission diversity. On the other hand, those channels are utilized to increase the data rate of enhancement layer data. This arrangement reduces service disruption under poor channel conditions by protecting the data that is more important to video decoding. Simulations show that our scheme safeguards the important packets and improves perceived video quality at a mobile device.

스마트폰과 같은 무선 기기의 보급률이 높아지면서 오디오 및 비디오 스트리밍 서비스를 이용하는 사용자가 급격히 증가하고 있다. 또한 고속 네트워크 환경이 갖추어 짐에 따라 보다 나은 서비스 품질(QoS)에 대한 요구가 증가하고 있다. 무선 환경에서는 불안정한 전송 채널로 인해 패킷의 손실이 빈번하게 발생하기 때문에, Scalable Video Coding (SVC) 영상 부호화 기법을 통하여 네트워크를 보다 더 효율적으로 사용할 수 있다. SVC 기법에서는 기본계층과 상위계층으로 부호화 정보를 구분하는데, 기본계층은 영상의 복원에 있어서 필수적인 저주파 성분을 형성하기 때문에 신뢰성 있는 전송이 필수적이다. 또한 상위계층은 고주파 성분을 형성하며 성공적인 수신 데이터의 양에 비례하여 비디오의 품질이 향상되기 때문에 채널 상황이 허용하는 한도 내에서 처리량(Throughput)을 높이는 것이 중요하다. 본 논문에서는 무조건적인 처리량의 향상보다는 SVC 비디오의 특징을 고려하여 평균 품질을 향상시킬 수 있는 듀얼-채널 활용 기법을 제안한다. 즉, 기본계층에 대해서는 중복 전송방식을 통해 전송의 신뢰성을 향상시키고, 상위계층에 대해서는 분배 전송 방식을 통해 전송 속도 및 처리량을 향상시켰다. 그 결과, 무선 이동환경에서 보다 고수준의 비디오 서비스 제공이 가능해짐을 시뮬레이션을 통해 확인하였다.

Keywords

References

  1. S. Khan, S. Duhovnikov, E. Steinbach, M. Sgroi, and W. Kellerer, "Application-driven cross-layer optimization for mobile multimedia communication using a common application layer quality metric", Proceedings of the 2006 international conference on Wireless communications and mobile computing, pp.213-218, 2006.
  2. V. Huang and Z. Weihua, "QoS-oriented access control for 4G mobile multimedia CDMA communications", Communications Magazine, IEEE, Vol.40, pp.118-125, 2002.
  3. T. Guenkova-Luy, A. J. Kassler, and D. Mandato, "End-to-end quality-of-service coordination for mobile multimedia applications", Selected Areas in Communications, IEEE Journal on, Vol.22, pp.889-903, 2004. https://doi.org/10.1109/JSAC.2004.826926
  4. E. Dahlman, 3G Evolution: HSPA and LTE for Mobile Broadband: Academic, 2008.
  5. H. Schwarz, D. Marpe, and T. Wiegand, "Overview of the Scalable Video Coding Extension of the H.264/AVC Standard", Circuits and Systems for Video Technology, IEEE Transactions on, Vol.17, pp.1103-1120, 2007. https://doi.org/10.1109/TCSVT.2007.905532
  6. T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, "Overview of the H.264/AVC video coding standard", Circuits and Systems for Video Technology, IEEE Transactions on, Vol.13, pp.560-576, 2003. https://doi.org/10.1109/TCSVT.2003.815165
  7. K. Kyungtae, W. J. Jeon, P. Kyung-Joon, R. H. Campbell, and K. Nahrstedt, "Cross-Layer Quality Assessment of Scalable Video Services on Mobile Embedded Systems", Mobile Computing, IEEE Transactions on, Vol.9, pp.1478-1490, 2010. https://doi.org/10.1109/TMC.2010.119
  8. http://www.3gpp2.org.
  9. http://cdg.org.
  10. 김현욱, IMT-2000 이동통신 원리. 진한도서, 2001.
  11. C. Young-June and B. Saewoong, "Scheduling for VoIP service in cdma2000 1xEV-DO", Communications, 2004 IEEE International Conference on, Vol.3, pp.1495-1499, 2004.
  12. N. Bhushan, C. Lott, P. Black, R. Attar, J. Yu-Cheun, M. Fan, D. Ghosh, and J. Au, "CDMA2000 1xEV-DO revision a: a physical layer and MAC layer overview", Communications Magazine, IEEE, Vol.44, pp.37-49, 2006. https://doi.org/10.1109/MCOM.2006.1593549
  13. A. Lahanas and V. Tsaoussidis, "Improving TCP performance over networks with wireless components using 'probing devices'", International Journal of Communication Systems, Vol.15, pp.495-511, 2002. https://doi.org/10.1002/dac.548
  14. M. Zorzi, R. R. Rao, and L. B. Milstein, ""Error statistics in data transmission over fading channels", Communications, IEEE Transactions on, Vol.46, pp.1468-1477, 1998. https://doi.org/10.1109/26.729391
  15. M. Zorzi, R. R. Rao, and L. B. Milstein, "On the accuracy of a first-order Markov model for data transmission on fading channels", Universal Personal Communications. 1995. Record., 1995 Fourth IEEE International Conference on, pp. 211-215, 1995.
  16. H. Murakami, W. Gang, and M. Inoue, "Improving TCP performance after a long channel outage", Communications, 2002. ICC 2002. IEEE International Conference on, Vol.5, pp. 3259-3265, 2002.
  17. A. Chockalingam, M. Zorzi, and R. R. Rao, "Performance of TCP on wireless fading links with memory", Communications, 1998. ICC 98. Conference Record. 1998 IEEE International Conference on, Vol.1, pp.595-600, 1998.
  18. M. Zorzi and R. R. Rao, "Perspectives an the impact of error statistics on protocols for wireless networks", Personal Communications, IEEE, Vol.6, pp.32-40, 1999.
  19. M. Zorzi and R. R. Rao, "The effect of correlated errors on the performance of TCP", Communications Letters, IEEE, Vol.1, pp.127-129, 1997. https://doi.org/10.1109/4234.625033
  20. R. Zorzi, A. Chockalingam, and R. R. Rao, "Throughput analysis of TCP on channels with memory", Selected Areas in Communications, IEEE Journal on, Vol.18, pp.1289-1300, 2000. https://doi.org/10.1109/49.857929
  21. W. Gang, B. Yong, L. Jie, and A. Ogielski, "Interactions between TCP and RLP in wireless Internet", Global Telecommunications Conference, 1999. GLOBECOM '99, Vol.1B, pp.661-666, 1999.
  22. W. J. Ebel and W. H. Tranter, "The performance of Reed-Solomon codes on a bursty-noise channel", Communications, IEEE Transactions on, Vol.43, pp.298-306, 1995. https://doi.org/10.1109/26.380048
  23. K. Kyungtae, "Probabilistic analysis of data interleaving for reed-solomon coding in BCMCS", Wireless Communications, IEEE Transactions on, Vol.7, pp.3878-3888, 2008. https://doi.org/10.1109/T-WC.2008.070437
  24. "Video Traces for Network Performance Evaluation.", Available: http://trace.eas.asu.edu/tracemain.html, 2010.