DOI QR코드

DOI QR Code

자료기반 실시간 홍수예측 모형의 비교·검토

Comparison of Data-based Real-Time Flood Forecasting Model

  • 최현구 (경북대학교 방재연구소) ;
  • 한건연 (경북대학교 건축.토목공학부) ;
  • 노홍식 (경북대학교 건축.토목공학부) ;
  • 박세진 (경북대학교 건축.토목공학부)
  • 투고 : 2013.02.15
  • 심사 : 2013.07.03
  • 발행 : 2013.09.30

초록

기후변화로 인해 발생하는 이상홍수에 대비하기 위해서는 다양한 대책을 강구할 필요가 있다. 그 중 비구조적 대책으로 홍수예경보시스템을 구축하여 홍수에 대비할 수 있도록 하는 것이 중요하다. 본 연구의 목적은 실시간 홍수예측 시스템을 구축하기 위해 뉴로-퍼지 모형과 다중선형회귀 모형을 비교하여 우수한 실시간 홍수예측 모형을 개발하는데 있다. 이를 위해 같은 입력자료를 사용하여 뉴로-퍼지 모형과 다중선형회귀 모형을 구축하고 낙동강 유역의 다양한 홍수사상에 대해 적용하였다. 모의결과 뉴로-퍼지 모형이 다중선형회귀 모형보다 좀 더 나은 예측 결과를 나타내는 것을 확인할 수 있었다. 본 연구는 향후 낙동강 유역의 충분한 선행시간을 확보한 정확도 높은 홍수정보시스템의 구축에 활용할 수 있을 것으로 판단된다.

Recently we need to take various measures to prepare for extreme flood that occur due to climate change. It is important that establish flood forecasting system to prepare flood over non-structure measures. The objective of this study is to develop superior real-time flood forecasting model by comparing the Neuro-fuzzy model and the multiple linear regression model. The Neuro-fuzzy model and the multiple linear regression model are established using same input data and applied for various flood events in Nakdong basin. The results show that the Neuro-fuzzy model can carry out flood forecasting results more accurately than the multiple linear regression model. This study can contribute to the establishment of a high accuracy flood information system that secure lead time in Nakdong basin.

키워드

참고문헌

  1. Brown, M. and Harris, C. (1994). Neuro-fuzzy adaptive modeling and control, Prentice Hall International (UK) Ltd. Hertfordshire, UK, p. 508.
  2. Carpenter, T. M., Georgakakos, K. P. and Sperfslage, J. A. (2001). "On the parametric and Nexrad-Radar sensitivities of a distributed hydrologic model suitable for operational use." Journal of Hydrology, Vol. 253, pp. 169-193. https://doi.org/10.1016/S0022-1694(01)00476-0
  3. Chaoulakou, A., Assimacopoulos, D. and Lekkas, T. (1999). "Forecasting daily maximum ozon concentration in the Athens basin." Environmental Monitoring and Assessment, Vol 56, pp. 97-112. https://doi.org/10.1023/A:1005943201063
  4. Choi, S.-Y. (2011). Real-time flood forecasting and inundation analysis in medium and small streams. Doctor Dissertation, Kyungpook National University (in Korean).
  5. Gautam, D. K. and Holz, K. P. (2001). "Rainfall-runoff modeling using adaptive neuro-fuzzy systems." Journal of Hydroinformatics, pp. 3-10.
  6. Imrie, C. E., Durucan, S. and Korre, A. (2000). "River flow prediction using artificial neural networks: generalisation beyond the calibration range." Journal of Hydrology, Vol. 233, pp. 138-153. https://doi.org/10.1016/S0022-1694(00)00228-6
  7. Jain, A., Sudheer, K. P. and Srinivasulu, S. (2004). "Identification of physical processes inherent in artificial neural network rainfallrunoff models." Hydrologic Process, Vol. 118, pp. 571-581.
  8. Jang, J.-S. (1992). "Self-learning fuzzy controllers based on temporal backpropagation." IEEE Trans Neural Netw, Vol. 3, No. 5, pp. 714-723. https://doi.org/10.1109/72.159060
  9. Jeong, D.-K. and Lee, B.-H. (2009). "Development of urban flood water level forecasting model using regression method." Journal of Korea Water Resources Association, Vol. 43, No. 2, pp. 221-231 (in Korean). https://doi.org/10.3741/JKWRA.2010.43.2.221
  10. Kim, K.-T., Kim, J.-H. and Choi, Y.-S. (2006). "Study of flood warning and forecasting in small to medium scale watershed." Korea Water Resources Association Conf., pp. 1126-1130 (in Korean).
  11. Ko, Y.-J. (2001). The application of fuzzy neural network on the hourly river flow forecating. Master Dissertation, Chonnam National University. pp. 1-6, pp. 14-17 (in Korean).
  12. Kurtulus, B. and Razack, M. (2009). "Modeling daily discharge responses of a large karstic aquifer using soft computing methods artificial neural network and neuro fuzzy." Journal of Hydrology, Vol. 375, pp. 146-162.
  13. Lohani, A. K., Kumar, R. and Singh, R. D. (2012). "Hydrological time series modeling: A Comparison Between Adaptive Neuro- Fuzzy, Neural Network And Autoregressive Techniques." Journal of Hydrology, Vol. 442-443, pp. 23-35. https://doi.org/10.1016/j.jhydrol.2012.03.031
  14. Luk, K. C., Ball, J. E. and Sharma, A. (2001). "An application of artificial neural networks for rainfall forecasting." Math Computer Model, Vol. 33, pp. 683-693. https://doi.org/10.1016/S0895-7177(00)00272-7
  15. Nayak, P. C., Sudheer, K. P., Rangan, D. M. and Ramasastri, K. S. (2005). "Short-term flood forecasting with a neurofuzzy model." Water Resources Research, Vol. 41, No. 4, W04004.
  16. Ramirez, M. C. P., Velho, H. F. C. and Ferreira, N. J. (2005). "Artificial neural network technique for rainfall forecasting applied to the sao paulo region." Journal of Hydrology, Vol. 301, pp. 146-162. https://doi.org/10.1016/j.jhydrol.2004.06.028
  17. Schilling, K. E. and Wolter, C. F (2005). "Estimation of streamflow, baseflow and nitrate-nitrogen loads in Iwoa using multiple regression models." Journal of American Water Resources Association, Vol. 41, No. 6, pp. 1333-1346. https://doi.org/10.1111/j.1752-1688.2005.tb03803.x
  18. Shin, S.-I. (2002). Study on forecasting flood discharge using neural network and neuro-fuzzy, Master Dissertation, Kyungil University (in Korean).
  19. Smith, J. and Eli, R. N. (1995). "Neural network models of the rainfall-runoff process." Journal of Water Resources Planning and Management, ASCE, Vol. 121, pp. 499-508. https://doi.org/10.1061/(ASCE)0733-9496(1995)121:6(499)
  20. Sung, J.-Y. and Heo, J.-H. (2009). "Tributary flood forecasting using statistical analysis method." Korea Water Resources Association Conf., pp. 1524-1527 (in Korean).
  21. Talei, A., Chua, L. H. C. and Wong, S. W. (2010). "Evaluation of rainfall and discharge inputs used by adaptive network-based fuzzy inference systems (ANFIS) in rainfall-runoff modeling." Journal of Hydrology, Vol. 391, Issues 3-4, pp. 248-262. https://doi.org/10.1016/j.jhydrol.2010.07.023
  22. Tangborn, W. V. and Rasmussen, L. A. (1976). "Hydrology of north cascades region, washington-part 2: A Proposed Hydrometeorological Streamflow Prediction Method." Water Resources Research, Vol. 12, pp. 203-216. https://doi.org/10.1029/WR012i002p00203
  23. Wu, C. L., Chau, K. W. and Li, Y. S. (2008). "River stage prediction based on a distributed support vector regression." Journal of Hydrology, Vol. 358, pp. 96-111. https://doi.org/10.1016/j.jhydrol.2008.05.028
  24. Yarar, M., Onucyildiz, M. and Copty, N. K. (2009). "Modelling level change in lakes using neuro fuzzy and artificial neural networks." Journal of Hydrology, Vol. 365, pp. 329-334. https://doi.org/10.1016/j.jhydrol.2008.12.006
  25. Yoon, Y.-N. and Wone, S.-Y. (1991). "A multiple regression model for the estimation of monthly runoff from ungaged watersheds." Journal of Korean Association of Hydrological Sciences, Vol. 24, No. 3, pp.71-82 (in Korean).
  26. Yurekli, K., Kurung, A. and Ozturk, F. (2005). "Testing residuals of an ARIMA model on the cekerek stream watershed in turkey." Turkish Journal of Engineering and Environmental Sciences, Vol. 29, pp. 61-74.