DOI QR코드

DOI QR Code

PHC 에너지 파일의 열교환율 예측에 관한 연구

Prediction of Heat Exchange Rate in PHC Energy Piles

  • 투고 : 2013.01.27
  • 심사 : 2013.09.12
  • 발행 : 2013.09.30

초록

최근 들어 경제적인 지열에너지 활용을 위하여 에너지 파일의 적용이 확대되고 있다. 특히 더 높은 열 교환 효율을 확보하고자 에너지 파일의 경우 보다 높은 열효율을 얻기 위해 통상적인 U자형 지중 열교환기가 아닌 코일형 지중열교환기를 매입하는 경우가 늘어나고 있다. 본 논문에서는 PHC 에너지 파일에 의한 지중 열 전달 거동에 대한 수치해석 및 실험적 연구를 수행하였다. 화강풍화토로 이루어진 현장에 PHC 에너지 파일을 설치하고 W자형과 코일형 지중 열교환기를 설치한 후 이에 대한 현장 열성능 실험을 수행하였다. 또한 3차원 유한요소해석을 수행하여 지중온도 및 지중 열교환기 내 순환수 온도 변화를 예측하였고 이를 실험값과 비교하였다. 냉방 부분 가동 조건 하에서 코일형 열교환기 이용시 W자형을 이용했을 때보다 10~15% 열교환율이 상승되는 것을 알 수 있었다.

The use of energy pile foundation has increased for economic utilization of geothermal energy. In particular, coil-shaped ground heat exchanger (GHE) is preferred to the conventional U-shaped exchanger to ensure better efficiency of heat exchange rate. This paper presents a numerical and experimental study on the heat transfer behavior of PHC energy piles. Field thermal performance tests (TPTs) were conducted for the PHC energy piles installed in a partially saturated weathered granite soil deposit, in which two types of GHEs were considered: W and coil shaped GHEs. Besides, three-dimensional finite element analyses were also conducted, and the results were compared with the experimental results. According to the results of TPT and numerical analyses, the coil shaped GHE showed 10~15% higher heat exchange rate than the W type GHE in the PHC energy piles.

키워드

참고문헌

  1. ABAQUS Inc. (2004), ABAQUS User's manual version 6.5, Rhode Island.
  2. Brandl, H. (2006), "Energy foundations and other thermo-active ground structures." Geotechnique, Vol.56, No.2, pp.81-122. https://doi.org/10.1680/geot.2006.56.2.81
  3. Choi, J. C, Lee, S. R., and Lee, D. S. (2011), "Numerical simulation of vertical ground heat exchangers: Intermittent operation in unsaturated soil condition." Computer and Geotechnics, Vol.38, pp.949-958. https://doi.org/10.1016/j.compgeo.2011.07.004
  4. COMSOL Multiphysics User's guide (2011), COMSOL Multiphysics version 4.2a.
  5. European Geothermal Energy Council (2008), Ground source heat pump: A guide book, Brussel.
  6. Jeong, S-S., Song, J-Y., Min, H-S., and Lee, S-J. (2010), "Thermal influential factors of energy pile", Journal of Korean Society of Civil Engineers, Vol.6, No.6C, pp.231-239.
  7. Laloui, L., Nuth, M., and Vulliet, L. (2006), "Experimental and numerical investigations of the behavior of a heat exchanger pile", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.30, No.8, pp.763-781. https://doi.org/10.1002/nag.499
  8. Man, Y., Yang, H., Diao, N, Liu, J. and Fang, Z. (2010), "A new model and analytical solutions for borehole and pile ground heat exchangers", International Journal of Heat and Mass Transfer, Vol.53, pp.2593-2601. https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.001
  9. Min, S., Lee, C., Park, M., Koh, H., and Choi, H. (2010), "Numerical study of heat transfer efficiency, performance and mechanical behavior induced by thermal stress of energy pile", Journal of the Korea Society of Geothermal Energy Engineers, Vol.6, No.2, pp.9-13.
  10. Morino, K. and Oka, T. (1994), "Study on heat exchanged in soil by circulating water in a steel pile", Energy and Buildings, Vol.21, No.1, pp.65-78. https://doi.org/10.1016/0378-7788(94)90017-5
  11. Nakayama, A., Kuwahara, F., Kokubo, N., Ishida, T., and Ohara, M. (2002), "A numerical model for thermal systems with helicallycoiled tubes and its experimental verification, International Journal of Heat and Mass Transfer, Vol.38, pp.389-398. https://doi.org/10.1007/s002310100196
  12. Pahud, D. and Hubbuck, M. (2007), "Measured thermal performances of the energy pile system of the dock midfield at Zurich airport", Proceedings of European Geothermal Congress, Unterhaching, Germany, pp.1-7.
  13. Park, H., Park, H., Lee, S-R., and Go, G-H. (2012), "Estimation of thermal conductivity of weathered granite soils", Journal of Korean Society of Civil Engineers, Vol.32, No.2C, pp.69-77.
  14. Sekine, K., Ooka, R., Yokoi, M., Shiba, Y., and Hwang, S. (2007), "Development of a ground-source heat pump system with ground heat exchanger utiilizing the cast-in-place concrete pile foundations of buildings", ASHARE Transaction, Vol.113, pp.558-566.
  15. Winterton, R., H., S. (1998), "Where did the Dittus and Boelter equation come from?", International Journal of Heat Mass Transfer, Vol.41(4/5), pp.809-810 https://doi.org/10.1016/S0017-9310(97)00177-4
  16. Yu, H. (2008), "Development and performance evaluation of ground heat exchanger utilizing PHC pile foundation of building", Journal of the Korean Solar Energy Society, Vol.28, No.5, pp.56-64.

피인용 문헌

  1. 에너지 파일의 현장 열응답 시험에 관한 연구 vol.30, pp.4, 2013, https://doi.org/10.7843/kgs.2014.30.4.93
  2. 피치 간격에 따른 수평 슬링키형과 코일형 지중 열교환기의 열효율 평가 vol.30, pp.7, 2014, https://doi.org/10.7843/kgs.2014.30.7.55