DOI QR코드

DOI QR Code

정상침투조건에서 흡입응력을 고려한 불포화 무한사면의 안정해석

Stability Analysis of the Unsaturated Infinite Slope Considering Suction Stress under Steady Infiltration Condition

  • 송영석 (한국지질자원연구원 지구환경연구본부)
  • Song, Young-Suk (Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2013.01.02
  • 심사 : 2013.08.21
  • 발행 : 2013.09.30

초록

본 연구에서는 흡입응력을 고려한 불포화 사면의 안정해석기법(Lu and Godt, 2008)을 제시하고, 모래로 구성된 특정사면에 대하여 적용한 결과를 분석하였다. 흡입응력을 고려한 불포화 사면의 안정해석기법은 강우의 침투 및 비침투에 따른 해석이 가능하고, 토층내 깊이에 따른 사면안전율을 산정할 수 있다. 또한 지표면으로부터 일정깊이까지의 풍화작용에 의한 영향을 고려할 수 있다. 이를 위하여 상대밀도 60%의 주문진 표준사로 구성된 불포화 무한사면에 대하여 흡입응력을 고려한 안정해석기법을 적용하였다. 강우의 비침투 조건에서 흡입응력은 지하수위로부터 상부의 일정깊이까지만 영향을 미치는 것으로 나타났으나, 강우의 정상침투 조건에서 흡입응력은 토층내 전체적으로 영향을 미치며, 지표면 부근에서 흡입응력이 가장 크게 발현됨을 알 수 있다. 강우의 비침투 조건에서 무한사면의 안전율은 지하수위에 의한 흡입응력의 영향범위 내에서 급격하게 증가 및 감소하였다. 사면안정해석결과 지표면으로부터 2.4m사이에서 사면안전율이 1이하 이므로 해당깊이에서 사면파괴가 발생될 가능성이 높은 것으로 나타났다. 강우의 정상침투가 발생되는 조건에서 무한사면의 안전율은 침투로 인한 토층내 흡입응력의 영향으로 비침투 조건에 비해 증가함을 알 수 있다. 그러나 강우의 정상침투율이 포화투수계수에 가까워짐에 따라 사면안전율은 감소하는 경향이 나타났다. 강우의 정상침투율이 $-1.8{\times}10^{-3}cm/s$인 경우 무한사면의 안정해석결과 지표면으로부터 0.2m에서 3m 사이에서 사면안전율이 1 이하이므로 해당깊이에서 사면파괴가 발생될 가능성이 높으며, 이는 얕은 산사태의 발생형태임을 알 수 있다.

In this paper, the unsaturated slope stability analysis considering suction stress (Lu and Godt, 2008) was introduced and the results applied for a certain sand slope were analyzed. The unsaturated slope stability analysis considering suction stress can analyze both conditions of steady infiltration and no infiltration, and it can estimate the safety factor of slope as a function of soil depth. Also, the influence of weathering phenomenon at a certain depth from the ground surface can be considered. The stability analysis considering suction stress was applied to the unsaturated infinite slope composed of sand with the relative density of 60%. The suction stress under no infiltration condition was affected by ground water table until a certain influencing depth. However, the suction stress under steady infiltration condition was affected by seepage throughout the soils. Especially, the maximum suction stress was displayed around ground surface. The factor of safety in the infinite slope under no infiltration condition rapidly increased and decreased within the influence zone of ground water table. As a result of slope stability analysis, the factor of safety is less than 1 at the depth of 2.4 m below the ground surface. It means that the probability of slope failure is too high within the range of depths. The factor of safety under steady infiltration condition is greater than that under no infiltration condition due to the change of suction stress induced by seepage. As the steady infiltration rate of precipitation was getting closer to the saturated hydraulic conductivity, the factor of safety decreased. In case of the steady infiltration rate of precipitation with $-1.8{\times}10^{-3}cm/s$, the factor of safety is less than 1 at the depths between 0.2 m and 3 m below the ground surface. It means that the probability of slope failure is too high within the range of depths, and type of slope failure is likely to be shallow landslides.

키워드

참고문헌

  1. Bishop, A.W. (1959), "The principle of effective stress", Teknisk Ukeblad I Samarbeide Med Teknikk, Vol.106, No.39, pp.859-863.
  2. Cornforth, D.H. (1973), "Prediction of drained strength of sands from relative density measurement", ASTM STP 523, pp.281-303.
  3. Cornforth, D.H. (2005), Landslides in Practice; Investigation, Analysis, and Remedial/Preventative Options in Soils, John Wiley and Sons, 569p.
  4. de Campos, T.M.P., Andrade, M.H.N., and Vargas, E.A., Jr. (1991), "Unsaturated colluvium over rock slide in a forested site in Rio de Janeiro, Brazil", Proc. 6th Int. Symp. on landslides, Christchurch, New Zealand, Vol.2, pp.1357-1364.
  5. Gallipoli, D., Gens, A., Sharma, R., and Vaunat, J. (2003), "An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behaviour", Geotechnique, Vol.53, No.1, pp.123-135. https://doi.org/10.1680/geot.2003.53.1.123
  6. Godt, J.W., Baum, R.L., and Chleborad, A.F. (2006), "Rainfall characteristics for shallow landsliding in Seattle, Washington, USA". Earth Surface Processes and Landforms, Vol.31, No.1, pp.97-110. https://doi.org/10.1002/esp.1237
  7. Hilf, J.W. (1956), An investigation of pore water pressure in compacted cohesive soils, Technical Memorandum No.654, U.S. Department of the interior, Bureau of Reclamation, Design and Construction Division, Denver, Colorado.
  8. Karube, D. and Kato, S. (1994), "An ideal unsaturated soil and the Bishop's soil", Proc. 13th nternational Conference on Soil Mechanics and Foundation Engineering, New Delhi, India, Vol.1, pp.43-46.
  9. Kim, J.H., Jeong, S.S., Park, S.W., and Sharma, J. (2004), "Influence of rainfall-induced wetting on the stability of slopes in weathered soils", Engineering Geology, Vol.75, pp.251-262. https://doi.org/10.1016/j.enggeo.2004.06.017
  10. Kim, K.S., Song, Y.S., Chae, B.G., Cho, Y.C., and Lee, C.O. (2007), "Geometric characteristics of landslides on natural terrain according to the geological condition", Journal of Engineering Geology, Vol.17, No.1, pp.75-87. (in Korean)
  11. Lu, N. and Godt., J. (2008), "Infinite-Slope Stability under Steady Unsaturated Seepage Conditions", Water Resources Research, W11404, Vol.44, pp.1-13.
  12. Lu, N. and Griffiths, D.V. (2004), "Suction stress profiles in unsaturated soils", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.130, No.10, pp.1063-1076. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1063)
  13. Lu, N. and Likos, W.J. (2004), Unsaturated soil mechanics, John Wiley & Sons Inc., New York. 556p.
  14. Lu, N. and Likos, W.J. (2006), "Suction stress characteristic curve for unsaturated soil", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.132, No.2, pp.131-142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131)
  15. Lu, N., Godt, J.W., and Wu, D.T. (2010), "A closed-form equation for effective stress in unsaturated soil", Water Resources Research, Vol.46, W05515.
  16. Marachi, N.D., Chan, C.K., Seed, H.B., and Duncan, J.M. (1969), Strength and deformation characteristics of rockfill materials, University fo California, Report TE-69-5, Berkeley, California.
  17. Mualem, Y. (1976), "A new model for predicting the hydraulic conductivity of unsaturated porous media", Water Resources Research, Vol.12, No.3, pp.513-522. https://doi.org/10.1029/WR012i003p00513
  18. Ng, C.W.W. and Shi, Q. (1998), "A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage", Computers and Geotechnics, Vol.22, No.1, pp.1-28. https://doi.org/10.1016/S0266-352X(97)00036-0
  19. Park, D.K., Oh, J.R., Son, Y.J., Park, J.H., and Lee, M.S. (2008), "Steep slope management system in Korea", Proc. the 2nd East Asia Landslides Symposium, Seoul, pp.7-11.
  20. Song, Y.S. and Choi, J.S. (2012), "Hysteresis of the suction stress in unsaturated weathered mudstone soils", Journal of Korean Geotechnical Society, Vol.28, No.3, pp.91-100. (in Korean) https://doi.org/10.7843/kgs.2012.28.4.91
  21. Song, Y.S., Choi, J.S., and Kim, G.W. (2012a), "Experimental study on the hysteresis of suction stress in unsaturated sand" Journal of Engineering Geology, Vol.22, No.2, pp.145-155. (in Korean) https://doi.org/10.9720/kseg.2012.22.2.145
  22. Song, Y.S., Hong, W.P., and Woo, K.S. (2012b), "Behavior and analysis of stabilizing piles installed in a cut slope during heavy rainfall", Engineering Geology, Vol.129-130, pp.56-67. https://doi.org/10.1016/j.enggeo.2012.01.012
  23. Song, Y.S., Hwang, W.K., Jung, S.J., and Kim, T.H. (2012c), "A comparative study of suction stress between sand and silt under unsaturated conditions", Engineering Geology, Vol.124, pp.90-97. https://doi.org/10.1016/j.enggeo.2011.10.006
  24. Song, Y.S., Lee, N.W., Hwang, W.K., and Kim, T.H. (2010), "Construction and application of an automated apparatus for calculating the Soil-Water Characteristic Curve", Journal of Engineering Geology, Vol.20, No.3, pp.281-295. (in Korean)
  25. Terzaghi, K. (1943), Theoretical soil mechanics, John Wiley & Sons Inc., New York.
  26. van Genuchten, M.T. (1980), "A closed-form equation for predicting the hydraulic conductivity of unsaturated soils", Soil Science Society of America Journal, Vol.44, pp.892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  27. Wayllace, A. and Lu, N. (2012), "A transient water release and imbibitions method for rapidly measuring wetting and drying soil water retention and hydraulic conductivity functions", Geotechnical Testing Journal, ASTM, Vol.35, GTJ103596. https://doi.org/10.1520/GTJ103596
  28. Wolle, C.M. and Hachich, W. (1989), "Rain-induced landslides in southeastern Brazil", Proc. of the 12th International Conference on Soil Mechanics and Foundation Engineering, Roi de Janeiro, pp. 1639-1644.

피인용 문헌

  1. 강우시 광산폐기물 적치사면의 침투 및 안정성에 대한 수치해석 vol.25, pp.1, 2013, https://doi.org/10.9720/kseg.2015.1.57
  2. 지질별 불포화토 사면의 붕괴 임계심도 분석 vol.25, pp.2, 2013, https://doi.org/10.9720/kseg.2015.2.299