DOI QR코드

DOI QR Code

Ginsenoside Rg3 Alleviates Lipopolysaccharide-Induced Learning and Memory Impairments by Anti-Inflammatory Activity in Rats

  • Lee, Bombi (Acupuncture and Meridian Science Research Center) ;
  • Sur, Bongjun (The Graduate School of Basic Science of Oriental Medicine, College of Oriental Medicine, Kyung Hee University) ;
  • Park, Jinhee (Acupuncture and Meridian Science Research Center) ;
  • Kim, Sung-Hun (Acupuncture and Meridian Science Research Center) ;
  • Kwon, Sunoh (Acupuncture and Meridian Science Research Center) ;
  • Yeom, Mijung (Acupuncture and Meridian Science Research Center) ;
  • Shim, Insop (Acupuncture and Meridian Science Research Center) ;
  • Lee, Hyejung (Acupuncture and Meridian Science Research Center) ;
  • Hahm, Dae-Hyun (Acupuncture and Meridian Science Research Center)
  • Received : 2013.06.17
  • Accepted : 2013.09.23
  • Published : 2013.09.30

Abstract

The purpose of this study was to examine whether ginsenoside Rg3 (GRg3) could improve learning and memory impairments and inflammatory reactions induced by injecting lipopolysaccharide (LPS) into the brains of rats. The effects of GRg3 on proinflammatory mediators in the hippocampus and the underlying mechanisms of these effects were also investigated. Injection of LPS into the lateral ventricle caused chronic inflammation and produced deficits in learning in a memory-impairment animal model. Daily administration of GRg3 (10, 20, and 50 mg/kg, i.p.) for 21 consecutive days markedly improved the LPS-induced learning and memory disabilities demonstrated on the step-through passive avoidance test and Morris water maze test. GRg3 administration significantly decreased expression of pro-inflammatory mediators such as tumor necrosis factor-${\alpha}$, interleukin-1${\beta}$, and cyclooxygenase-2 in the hippocampus, as assessed by reverse transcription-polymerase chain reaction analysis and immunohistochemistry. Together, these findings suggest that GRg3 significantly attenuated LPS-induced cognitive impairment by inhibiting the expression of pro-inflammatory mediators in the rat brain. These results suggest that GRg3 may be effective for preventing or slowing the development of neurological disorders, including Alzheimer's disease, by improving cognitive and memory functions due to its anti-inflammatory activity in the brain.

Keywords

References

  1. Attele, A. S., Wu, J. A. and Yuan, C. S. (1999) Ginseng pharmacology: multiple constituents and multiple actions. Biochem. Pharmacol. 58, 1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
  2. Bae, E. A., Han, M. J., Shin, Y. W. and Kim, D. H. (2006a) Inhibitory effects of Korean red ginseng and its genuine constituents ginsenosides Rg3, Rf, and Rh2 in mouse passive cutaneous anaphylaxis reaction and contact dermatitis models. Biol. Pharm. Bull. 29, 1862-1867. https://doi.org/10.1248/bpb.29.1862
  3. Bae, E. A., Kim, E. J., Park, J. S., Kim, H. S., Ryu, J. H. and Kim, D. H. (2006b) Ginsenosides Rg3 and Rh2 inhibit the activation of AP-1 and protein kinase A pathway in lipopolysaccharide/interferon-gamma-stimulated BV-2 microglial cells. Planta Med. 72, 627-633. https://doi.org/10.1055/s-2006-931563
  4. Bilbo, S. D., Biedenkapp, J. C., Der-Avakian, A., Watkins, L. R., Rudy, J. W. and Maier, S. F. (2005) Neonatal infection-induced memory impairment after lipopolysaccharide in adulthood is prevented via caspase-1 inhibition. J. Neurosci. 25, 8000-8009. https://doi.org/10.1523/JNEUROSCI.1748-05.2005
  5. Castanon, N., Bluthe, R. M. and Dantzer, R. (2001) Chronic treatment with the atypical antidepressant tianeptine attenuates sickness behavior induced by peripheral but not central lipopolysaccharide and interleukin-1beta in the rat. Psychopharmacology (Berl) 154, 50-60. https://doi.org/10.1007/s002130000595
  6. Choi, S. H., Langenbach, R. and Bosetti, F. (2008) Genetic deletion or pharmacological inhibition of cyclooxygenase-1 attenuate lipopolysaccharide-induced inflammatory response and brain injury. FASEB J. 22, 1491-1501. https://doi.org/10.1096/fj.07-9411com
  7. Collister, K. A. and Albensi, B. C. (2005) Potential therapeutic targets in the NF-kappaB pathway for Alzheimer's disease. Drug News Perspect. 18, 623-629. https://doi.org/10.1358/dnp.2005.18.10.959576
  8. Cunningham, C., Campion, S., Lunnon, K., Murray, C. L., Woods, J. F., Deacon, R. M., Rawlins, J. N. and Perry, V. H. (2009) Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol. Psychiatry 65, 304-312. https://doi.org/10.1016/j.biopsych.2008.07.024
  9. Deng, X. H., Ai, W. M., Lei, D. L., Luo, X. G., Yan, X. X. and Li, Z. (2012) Lipopolysaccharide induces paired immunoglobulin-like receptor B (PirB) expression, synaptic alteration, and learning-memory deficit in rats. Neuroscience. 209, 161-170. https://doi.org/10.1016/j.neuroscience.2012.02.022
  10. Feher, A., Juhasz, A., Rimanoczy, A., Kalman, J. and Janka, Z. (2010) Association study of interferon-${\gamma}$, cytosolic phospholipase A2, and cyclooxygenase-2 gene polymorphisms in Alzheimer disease. Am. J. Geriatr. Psychiatry 18, 983-987. https://doi.org/10.1097/JGP.0b013e3181e70c05
  11. Frank-Cannon, T. C., Alto, L. T., McAlpine, F. E. and Tansey, M. G. (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol. Neurodegener. 4, 47. https://doi.org/10.1186/1750-1326-4-47
  12. Fujimi, K., Noda, K., Sasaki, K., Wakisaka, Y., Tanizaki, Y., Iida, M., Kiyohara, Y., Kanba, S. and Iwaki, T. (2007) Altered expression of COX-2 in subdivisions of the hippocampus during aging and in Alzheimer's disease: the Hisayama Study. Dement. Geriatr. Cogn. Disord. 23, 423-431. https://doi.org/10.1159/000101957
  13. Gaab, J., Rohleder, N., Heitz, V., Engert, V., Schad, T., Schurmeyer, T.H. and Ehlert, U. (2005) Stress-induced changes in LPS-induced pro-inflammatory cytokine production in chronic fatigue syndrome. Psychoneuroendocrinology 30, 188-198. https://doi.org/10.1016/j.psyneuen.2004.06.008
  14. Gong, Q. H., Pan, L. L., Liu, X. H., Wang, Q., Huang, H. and Zhu, Y. Z. (2011) S-propargyl-cysteine (ZYZ-802), a sulphur-containing amino acid, attenuates beta-amyloid-induced cognitive deficits and pro-inflammatory response: involvement of ERK1/2 and NF-${\kappa}B$ pathway in rats. Amino Acids 40, 601-610. https://doi.org/10.1007/s00726-010-0685-1
  15. Gong, Q. H., Wang, Q., Pan, L. L., Liu, X. H., Huang, H. and Zhu, Y. Z. (2010) Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: a pro-inflammatory pathway in rats. Pharmacol. Biochem. Behav. 96, 52-58. https://doi.org/10.1016/j.pbb.2010.04.006
  16. Graupera, M., Garcia-Pagan, J. C., Abraldes, J. G., Peralta, C., Bragulat, M., Corominola, H., Bosch, J. and Rodes, J. (2003) Cyclooxygenase-derived products modulate the increased intrahepatic resistance of cirrhotic rat livers. Hepatology 37, 172-181. https://doi.org/10.1053/jhep.2003.50004
  17. Gum, S. I. and Cho, M. K. (2013) Korean red ginseng extract prevents APAP-induced hepatotoxicity through metabolic enzyme regulation: the role of ginsenoside Rg3, a protopanaxadiol. Liver Int. 33, 1071-1084. https://doi.org/10.1111/liv.12046
  18. Guo, J., Li, F., Wu, Q., Gong, Q., Lu, Y. and Shi, J. (2010) Protective effects of icariin on brain dysfunction induced by lipopolysaccharide in rats. Phytomedicine 17, 950-955. https://doi.org/10.1016/j.phymed.2010.03.007
  19. Ho, Y. S., So, K. F. and Chang, R. C. (2011) Drug discovery from Chinese medicine against neurodegeneration in Alzheimer's and vascular dementia. Chin. Med. 6, 15. https://doi.org/10.1186/1749-8546-6-15
  20. Hwang, D. Y., Chae, K. R., Kang, T. S., Hwang, J. H., Lim, C. H., Kang, H. K., Goo, J. S., Lee, M. R., Lim, H. J., Min, S. H., Cho, J. Y., Hong, J. T., Song, C. W., Paik, S. G., Cho, J. S. and Kim, Y. K. (2002) Alterations in behavior, amyloid beta 1-42, caspase-3, and COX-2 in mutant PS2 transgenic mouse model of Alzheimer's disease. FASEB J. 16, 805-813. https://doi.org/10.1096/fj.01-0732com
  21. Hwang, Y. K., Ma, J., Choi, B. R., Cui, C. A., Jeon, W. K., Kim, H., Kim, H. Y., Han, S. H. and Han, J. S. (2011) Effects of Scutellaria baicalensis on chronic cerebral hypoperfusion-induced memory impairments and chronic lipopolysaccharide infusion-induced memory impairments. J. Ethnopharmacol. 137, 681-689. https://doi.org/10.1016/j.jep.2011.06.025
  22. Jain, N. K., Patil, C. S., Kulkarni, S. K. and Singh, A. (2002) Modulatory role of cyclooxygenase inhibitors in aging- and scopolamine or lipopolysaccharide-induced cognitive dysfunction in mice. Behav. Brain Res. 133, 369-376. https://doi.org/10.1016/S0166-4328(02)00025-6
  23. Jin, S. H., Park, J. K., Nam, K. Y., Park, S. N. and Jung, N. P. (1999) Korean red ginseng saponins with low ratios of protopanaxadiol and protopanaxatriol saponin improve scopolamine-induced learning disability and spatial working memory in mice. J. Ethnopharmacol. 66, 123-129. https://doi.org/10.1016/S0378-8741(98)00190-1
  24. Joo, S. S., Yoo, Y. M., Ahn, B. W., Nam, S. Y., Kim, Y. B., Hwang, K. W. and Lee, I. (2008) Prevention of inflammation-mediated neurotoxicity by Rg3 and its role in microglial activation. Biol. Pharm. Bull. 31, 1392-1396. https://doi.org/10.1248/bpb.31.1392
  25. Kang, K. S., Kim, H. Y., Yamabe, N., Park, J. H. and Yokozawa, T. (2007) Preventive effect of 20(S)-ginsenoside Rg3 against lipopolysaccharide-induced hepatic and renal injury in rats. Free Radic. Res. 41, 1181-1188. https://doi.org/10.1080/10715760701581740
  26. Kelloff, G. J., Crowell, J. A., Steele, V. E., Lubet, R. A., Malone, W. A., Boone, C. W., Kopelovich, L., Hawk, E. T., Lieberman, R., Lawrence, J. A., Ali, I., Viner, J. L. and Sigman, C. C. (2000) Progress in cancer chemoprevention: development of diet-derived chemopreventive agents. J. Nutr. 130, 467S-471S. https://doi.org/10.1093/jn/130.2.467S
  27. Kim, J. H., Kang, S. A., Han, S. M. and Shim, I. (2009) Comparison of the antiobesity effects of the protopanaxadiol- and protopanaxatriol-type saponins of red ginseng. Phytother. Res. 23, 78-85. https://doi.org/10.1002/ptr.2561
  28. Kim, N. H., Kim, K. Y., Jeong, H. J. and Kim, H. M. (2011) Antidepressant-like effect of altered Korean red ginseng in mice. Behav. Med. 37, 42-46. https://doi.org/10.1080/08964289.2011.566591
  29. Kitazawa, M., Oddo, S., Yamasaki, T. R., Green, K. N. and LaFerla, F. M. (2005) Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease. J. Neurosci. 25, 8843-8853. https://doi.org/10.1523/JNEUROSCI.2868-05.2005
  30. Kumar, A., Seghal, N., Padi, S. V. and Naidu, P. S. (2006) Differential effects of cyclooxygenase inhibitors on intracerebroventricular colchicine-induced dysfunction and oxidative stress in rats. Eur. J. Pharmacol. 551, 58-66. https://doi.org/10.1016/j.ejphar.2006.08.076
  31. Lee, J. W., Lee, Y. K., Yuk, D. Y., Choi, D. Y., Ban, S. B., Oh, K. W. and Hong, J. T. (2008) Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J. Neuroinflammation 5, 37. https://doi.org/10.1186/1742-2094-5-37
  32. Lee, B., Park, J., Kwon, S., Park, M. W., Oh, S. M., Yeom, M. J., Shim, I., Lee, H. J. and Hahm, D. H. (2010) Effect of wild ginseng on scopolamine-induced acetylcholine depletion in the rat hippocampus. J. Pharm. Pharmacol. 62, 263-271. https://doi.org/10.1211/jpp.62.02.0015
  33. Lee, B., Shim, I., Lee, H. and Hahm, D. H. (2012) Effect of ginsenoside Re on depression-and anxiety-like behaviors and cognition memory deficit induced by repeated immobilization in rats. J. Microbiol. Biotechnol. 22, 708-720. https://doi.org/10.4014/jmb.1112.12046
  34. Lukiw, W. J. and Bazan, N. G. (2000) Neuroinflammatory signaling upregulation in Alzheimer's disease. Neurochem. Res. 25, 1173-1184. https://doi.org/10.1023/A:1007627725251
  35. Min, S. S., Quan, H. Y., Ma, J., Han, J. S., Jeon, B. H. and Seol, G. H. (2009) Chronic brain inflammation impairs two forms of long-term potentiation in the rat hippocampal CA1 area. Neurosci. Lett. 456, 20-24. https://doi.org/10.1016/j.neulet.2009.03.079
  36. Miwa, M., Tsuboi, M., Noguchi, Y., Enokishima, A., Nabeshima, T. and Hiramatsu, M. (2011) Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2. J. Neuroinflammation 8, 153.
  37. Mrak, R. E. (2009) Neuropathology and the neuroinflammation idea. J. Alzheimers Dis. 18, 473-481. https://doi.org/10.3233/JAD-2009-1158
  38. Park, S. M., Choi, M. S., Sohn, N. W. and Shin, J. W. (2012) Ginsenoside Rg3 attenuates microglia activation following systemic lipopolysaccharide treatment in mice. Biol. Pharm. Bull. 35, 1546-1552. https://doi.org/10.1248/bpb.b12-00393
  39. Paxinos, G. and Watson, C. (1986) The rat brain in stereotaxic coordinates. pp.54-85. Academic Press., New York.
  40. Sayyah, M., Javad-Pour, M. and Ghazi-Khansari, M. (2003) The bacterial endotoxin lipopolysaccharide enhances seizure susceptibility in mice: involvement of proinflammatory factors: nitric oxide and prostaglandins. Neuroscience 122, 1073-1080. https://doi.org/10.1016/j.neuroscience.2003.08.043
  41. Schwab, C. and McGeer, P. L. (2008) Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders. J. Alzheimers Dis. 13, 359-369. https://doi.org/10.3233/JAD-2008-13402
  42. Stepanichev, M. Y., Zdobnova, I. M., Yakovlev, A. A., Onufriev, M. V., Lazareva, N. A., Zarubenko, II. and Gulyaeva, N. V. (2003) Effects of tumor necrosis factor-alpha central administration on hippocampal damage in rat induced by amyloid beta-peptide (25-35). J. Neurosci. Res. 71, 110-120. https://doi.org/10.1002/jnr.10469
  43. Szekely, C. A., Breitner, J. C., Fitzpatrick, A. L., Rea, T. D., Psaty, B. M., Kuller, L. H. and Zandi, P. P. (2008) NSAID use and dementia risk in the cardiovascular health study: role of ApoE and NSAID type. Neurology 70, 17-24. https://doi.org/10.1212/01.wnl.0000284596.95156.48
  44. Tian, J., Fu, F., Geng, M., Jiang, Y., Yang, J., Jiang, W., Wang, C. and Liu. K. (2005) Neuroprotective effect of 20(S)-ginsenoside Rg3 on cerebral ischemia in rats. Neurosci. Lett. 374, 92-97. https://doi.org/10.1016/j.neulet.2004.10.030
  45. Tode, T., Kikuchi, Y., Hirata, J., Kita, T., Nakata, H. and Nagata, I. (1999) Effect of Korean red ginseng on psychological functions in patients with severe climacteric syndromes. Int. J. Gynaecol. Obstet. 67, 169-174. https://doi.org/10.1016/S0020-7292(99)00168-X
  46. Wang, Y., Liu, J., Zhang, Z., Bi, P., Qi, Z. and Zhang, C. (2011) Anti-neuroinflammation effect of ginsenoside Rbl in a rat model of Alzheimer disease. Neurosci. Lett. 487, 70-72. https://doi.org/10.1016/j.neulet.2010.09.076
  47. Wang, Q., Sun, L. H., Jia, W., Liu, X. M., Dang, H. X., Mai, W. L., Wang, N., Steinmetz, A., Wang, Y. Q. and Xu, C. J. (2010) Comparison of ginsenosides Rg1 and Rb1 for their effects on improving scopolamine-induced learning and memory impairment in mice. Phytother. Res. 24, 1748-1754. https://doi.org/10.1002/ptr.3130
  48. Yin, P., Li, Z., Wang, Y. Y., Qiao, N. N., Huang, S. Y., Sun, R. P. and Wang, J. W. (2013) Neonatal immune challenge exacerbates seizure-induced hippocampus-dependent memory impairment in adult rats. Epilepsy Behav. 27, 9-17. https://doi.org/10.1016/j.yebeh.2012.12.015
  49. Zhao, H. F., Li, Q. and Li, Y. (2011) Long-term ginsenoside administration prevents memory loss in aged female C57BL/6J mice by modulating the redox status and up-regulating the plasticity-related proteins in hippocampus. Neuroscience 183, 189-202. https://doi.org/10.1016/j.neuroscience.2011.03.048
  50. Zipp, F. and Aktas, O. (2006) The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci. 29, 518-527. https://doi.org/10.1016/j.tins.2006.07.006

Cited by

  1. The impact of ginsenosides on cognitive deficits in experimental animal studies of Alzheimer’s disease: a systematic review vol.15, pp.1, 2015, https://doi.org/10.1186/s12906-015-0894-y
  2. Suppressive Effect of Ginsenoside Rg3 against Lipopolysaccharide-Induced Depression-Like Behavior and Neuroinflammation in Mice vol.65, pp.32, 2017, https://doi.org/10.1021/acs.jafc.7b02386
  3. The psychopharmacological activities of Vietnamese ginseng in mice: characterization of its psychomotor, sedative–hypnotic, antistress, anxiolytic, and cognitive effects vol.41, pp.2, 2017, https://doi.org/10.1016/j.jgr.2016.03.005
  4. Antidepressant-like effects of ginsenoside Rg3 in mice via activation of the hippocampal BDNF signaling cascade vol.71, pp.2, 2017, https://doi.org/10.1007/s11418-016-1066-1
  5. Ginsenoside Rg3 ameliorates lipopolysaccharide-induced acute lung injury in mice through inactivating the nuclear factor-κB (NF-κB) signaling pathway vol.34, 2016, https://doi.org/10.1016/j.intimp.2016.02.011
  6. Inhibition of hypoxia-induced cyclooxygenase-2 by Korean Red Ginseng is dependent on peroxisome proliferator-activated receptor gamma vol.41, pp.3, 2017, https://doi.org/10.1016/j.jgr.2016.04.001
  7. Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer’s disease: A review vol.75, 2017, https://doi.org/10.1016/j.bioorg.2017.09.004
  8. Chronic treatment with ginsenoside Rg1 promotes memory and hippocampal long-term potentiation in middle-aged mice vol.292, 2015, https://doi.org/10.1016/j.neuroscience.2015.02.031
  9. Anti-Inflammatory Effects of Ginsenoside Rg3 via NF-κB Pathway in A549 Cells and Human Asthmatic Lung Tissue vol.2016, 2016, https://doi.org/10.1155/2016/7521601
  10. Ginsenoside Rg1 ameliorates hippocampal long-term potentiation and memory in an Alzheimer's disease model vol.13, pp.6, 2016, https://doi.org/10.3892/mmr.2016.5103
  11. ATF-2/CREB/IRF-3-targeted anti-inflammatory activity of Korean red ginseng water extract vol.154, pp.1, 2014, https://doi.org/10.1016/j.jep.2014.04.008
  12. Spermine reverses lipopolysaccharide-induced memory deficit in mice vol.12, pp.1, 2015, https://doi.org/10.1186/s12974-014-0220-5
  13. Characterization of the changes in eicosanoid profiles of activated macrophages treated with 20(S)-ginsenoside Rg3 vol.1065-1066, 2017, https://doi.org/10.1016/j.jchromb.2017.09.002
  14. Glucosylceramide attenuates the inflammatory mediator expression in lipopolysaccharide-stimulated RAW264.7 cells vol.35, pp.3, 2015, https://doi.org/10.1016/j.nutres.2015.01.001
  15. A Role of Ginseng and Its Constituents in the Treatment of Central Nervous System Disorders vol.2016, 2016, https://doi.org/10.1155/2016/2614742
  16. Evaluation of structure–activity relationships of ginsenosides against amyloid β induced pathological behaviours in transgenic Caenorhabditis elegans vol.7, pp.64, 2017, https://doi.org/10.1039/C7RA05717B
  17. Simultaneous determination of 14 bioactive compounds in Samchulkunbi-tang using HPLC-DAD and LC-MS vol.6, pp.15, 2014, https://doi.org/10.1039/C4AY00386A
  18. Role of ginsenosides, the main active components of Panax ginseng , in inflammatory responses and diseases vol.41, pp.4, 2017, https://doi.org/10.1016/j.jgr.2016.08.004
  19. Pharmacological Effects of Active Components of Chinese Herbal Medicine in the Treatment of Alzheimer's Disease: A Review vol.44, pp.08, 2016, https://doi.org/10.1142/S0192415X16500853
  20. Ginsenoside-Rp1-induced apolipoprotein A-1 expression in the LoVo human colon cancer cell line vol.38, pp.4, 2014, https://doi.org/10.1016/j.jgr.2014.06.003
  21. Lipopolysaccharide-induced memory impairment in rats is preventable using 7-nitroindazole vol.73, pp.9, 2015, https://doi.org/10.1590/0004-282X20150121
  22. Red ginseng represses hypoxia-induced cyclooxygenase-2 through sirtuin1 activation vol.22, pp.6, 2015, https://doi.org/10.1016/j.phymed.2015.03.005
  23. Stereoselective pharmacokinetic and metabolism studies of 20(S)- and 20(R)-ginsenoside Rg 3 epimers in rat plasma by liquid chromatography-electrospray ionization mass spectrometry vol.121, 2016, https://doi.org/10.1016/j.jpba.2016.01.020
  24. Ginsenoside Rg3 Improves Recovery from Spinal Cord Injury in Rats via Suppression of Neuronal Apoptosis, Pro-Inflammatory Mediators, and Microglial Activation vol.22, pp.1, 2017, https://doi.org/10.3390/molecules22010122
  25. 20( R )-Ginsenoside Rg3 protects SH-SY5Y cells against apoptosis induced by oxygen and glucose deprivation/reperfusion vol.27, pp.16, 2017, https://doi.org/10.1016/j.bmcl.2017.06.045
  26. In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1K, prepared from Panax ginseng vol.41, pp.1, 2017, https://doi.org/10.1016/j.jgr.2015.12.009
  27. Stereoisomers of Saponins in Panax notoginseng (Sanqi): A Review vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00188
  28. Gypenosides attenuate lipopolysaccharide-induced neuroinflammation and anxiety-like behaviors in rats vol.22, pp.5, 2018, https://doi.org/10.1080/19768354.2018.1517825
  29. Gypenosides Attenuate Lipopolysaccharide-Induced Neuroinflammation and Memory Impairment in Rats vol.2018, pp.1741-4288, 2018, https://doi.org/10.1155/2018/4183670
  30. The anxiolytic-like effects of ginsenoside Rg3 on chronic unpredictable stress in rats vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-26146-5
  31. KCCM 12010P isolated from kimchi vol.53, pp.5, 2018, https://doi.org/10.1111/ijfs.13713
  32. Ginsenoside Rg3 Decreases Fibrotic and Invasive Nature of Endometriosis by Modulating miRNA-27b: In Vitro and In Vivo Studies vol.7, pp.None, 2013, https://doi.org/10.1038/s41598-017-17956-0
  33. Management of oxidative stress and other pathologies in Alzheimer’s disease vol.93, pp.9, 2013, https://doi.org/10.1007/s00204-019-02538-y
  34. Botanicals as modulators of depression and mechanisms involved vol.14, pp.None, 2019, https://doi.org/10.1186/s13020-019-0246-9
  35. 산삼 부정배양근의 진세노사이드 함량 증진과 성분 변환 vol.28, pp.6, 2013, https://doi.org/10.7783/kjmcs.2020.28.6.445
  36. The Effects of New Zealand Grown Ginseng Fractions on Cytokine Production from Human Monocytic THP-1 Cells vol.26, pp.4, 2021, https://doi.org/10.3390/molecules26041158
  37. Effect of Korean Red Ginseng and Rg3 on Asian Sand Dust-Induced MUC5AC, MUC5B, and MUC8 Expression in Bronchial Epithelial Cells vol.26, pp.7, 2013, https://doi.org/10.3390/molecules26072002
  38. Ginsenoside Absorption Rate and Extent Enhancement of Black Ginseng (CJ EnerG) over Red Ginseng in Healthy Adults vol.13, pp.4, 2013, https://doi.org/10.3390/pharmaceutics13040487
  39. The promising therapeutic potentials of ginsenosides mediated through p38 MAPK signaling inhibition vol.7, pp.11, 2013, https://doi.org/10.1016/j.heliyon.2021.e08354
  40. Administration of red ginseng regulates microRNA expression in a mouse model of endometriosis vol.48, pp.4, 2013, https://doi.org/10.5653/cerm.2021.04392