References
- Attele, A. S., Wu, J. A. and Yuan, C. S. (1999) Ginseng pharmacology: multiple constituents and multiple actions. Biochem. Pharmacol. 58, 1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
- Bae, E. A., Han, M. J., Shin, Y. W. and Kim, D. H. (2006a) Inhibitory effects of Korean red ginseng and its genuine constituents ginsenosides Rg3, Rf, and Rh2 in mouse passive cutaneous anaphylaxis reaction and contact dermatitis models. Biol. Pharm. Bull. 29, 1862-1867. https://doi.org/10.1248/bpb.29.1862
- Bae, E. A., Kim, E. J., Park, J. S., Kim, H. S., Ryu, J. H. and Kim, D. H. (2006b) Ginsenosides Rg3 and Rh2 inhibit the activation of AP-1 and protein kinase A pathway in lipopolysaccharide/interferon-gamma-stimulated BV-2 microglial cells. Planta Med. 72, 627-633. https://doi.org/10.1055/s-2006-931563
- Bilbo, S. D., Biedenkapp, J. C., Der-Avakian, A., Watkins, L. R., Rudy, J. W. and Maier, S. F. (2005) Neonatal infection-induced memory impairment after lipopolysaccharide in adulthood is prevented via caspase-1 inhibition. J. Neurosci. 25, 8000-8009. https://doi.org/10.1523/JNEUROSCI.1748-05.2005
- Castanon, N., Bluthe, R. M. and Dantzer, R. (2001) Chronic treatment with the atypical antidepressant tianeptine attenuates sickness behavior induced by peripheral but not central lipopolysaccharide and interleukin-1beta in the rat. Psychopharmacology (Berl) 154, 50-60. https://doi.org/10.1007/s002130000595
- Choi, S. H., Langenbach, R. and Bosetti, F. (2008) Genetic deletion or pharmacological inhibition of cyclooxygenase-1 attenuate lipopolysaccharide-induced inflammatory response and brain injury. FASEB J. 22, 1491-1501. https://doi.org/10.1096/fj.07-9411com
- Collister, K. A. and Albensi, B. C. (2005) Potential therapeutic targets in the NF-kappaB pathway for Alzheimer's disease. Drug News Perspect. 18, 623-629. https://doi.org/10.1358/dnp.2005.18.10.959576
- Cunningham, C., Campion, S., Lunnon, K., Murray, C. L., Woods, J. F., Deacon, R. M., Rawlins, J. N. and Perry, V. H. (2009) Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol. Psychiatry 65, 304-312. https://doi.org/10.1016/j.biopsych.2008.07.024
- Deng, X. H., Ai, W. M., Lei, D. L., Luo, X. G., Yan, X. X. and Li, Z. (2012) Lipopolysaccharide induces paired immunoglobulin-like receptor B (PirB) expression, synaptic alteration, and learning-memory deficit in rats. Neuroscience. 209, 161-170. https://doi.org/10.1016/j.neuroscience.2012.02.022
-
Feher, A., Juhasz, A., Rimanoczy, A., Kalman, J. and Janka, Z. (2010) Association study of interferon-
${\gamma}$ , cytosolic phospholipase A2, and cyclooxygenase-2 gene polymorphisms in Alzheimer disease. Am. J. Geriatr. Psychiatry 18, 983-987. https://doi.org/10.1097/JGP.0b013e3181e70c05 - Frank-Cannon, T. C., Alto, L. T., McAlpine, F. E. and Tansey, M. G. (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol. Neurodegener. 4, 47. https://doi.org/10.1186/1750-1326-4-47
- Fujimi, K., Noda, K., Sasaki, K., Wakisaka, Y., Tanizaki, Y., Iida, M., Kiyohara, Y., Kanba, S. and Iwaki, T. (2007) Altered expression of COX-2 in subdivisions of the hippocampus during aging and in Alzheimer's disease: the Hisayama Study. Dement. Geriatr. Cogn. Disord. 23, 423-431. https://doi.org/10.1159/000101957
- Gaab, J., Rohleder, N., Heitz, V., Engert, V., Schad, T., Schurmeyer, T.H. and Ehlert, U. (2005) Stress-induced changes in LPS-induced pro-inflammatory cytokine production in chronic fatigue syndrome. Psychoneuroendocrinology 30, 188-198. https://doi.org/10.1016/j.psyneuen.2004.06.008
-
Gong, Q. H., Pan, L. L., Liu, X. H., Wang, Q., Huang, H. and Zhu, Y. Z. (2011) S-propargyl-cysteine (ZYZ-802), a sulphur-containing amino acid, attenuates beta-amyloid-induced cognitive deficits and pro-inflammatory response: involvement of ERK1/2 and NF-
${\kappa}B$ pathway in rats. Amino Acids 40, 601-610. https://doi.org/10.1007/s00726-010-0685-1 - Gong, Q. H., Wang, Q., Pan, L. L., Liu, X. H., Huang, H. and Zhu, Y. Z. (2010) Hydrogen sulfide attenuates lipopolysaccharide-induced cognitive impairment: a pro-inflammatory pathway in rats. Pharmacol. Biochem. Behav. 96, 52-58. https://doi.org/10.1016/j.pbb.2010.04.006
- Graupera, M., Garcia-Pagan, J. C., Abraldes, J. G., Peralta, C., Bragulat, M., Corominola, H., Bosch, J. and Rodes, J. (2003) Cyclooxygenase-derived products modulate the increased intrahepatic resistance of cirrhotic rat livers. Hepatology 37, 172-181. https://doi.org/10.1053/jhep.2003.50004
- Gum, S. I. and Cho, M. K. (2013) Korean red ginseng extract prevents APAP-induced hepatotoxicity through metabolic enzyme regulation: the role of ginsenoside Rg3, a protopanaxadiol. Liver Int. 33, 1071-1084. https://doi.org/10.1111/liv.12046
- Guo, J., Li, F., Wu, Q., Gong, Q., Lu, Y. and Shi, J. (2010) Protective effects of icariin on brain dysfunction induced by lipopolysaccharide in rats. Phytomedicine 17, 950-955. https://doi.org/10.1016/j.phymed.2010.03.007
- Ho, Y. S., So, K. F. and Chang, R. C. (2011) Drug discovery from Chinese medicine against neurodegeneration in Alzheimer's and vascular dementia. Chin. Med. 6, 15. https://doi.org/10.1186/1749-8546-6-15
- Hwang, D. Y., Chae, K. R., Kang, T. S., Hwang, J. H., Lim, C. H., Kang, H. K., Goo, J. S., Lee, M. R., Lim, H. J., Min, S. H., Cho, J. Y., Hong, J. T., Song, C. W., Paik, S. G., Cho, J. S. and Kim, Y. K. (2002) Alterations in behavior, amyloid beta 1-42, caspase-3, and COX-2 in mutant PS2 transgenic mouse model of Alzheimer's disease. FASEB J. 16, 805-813. https://doi.org/10.1096/fj.01-0732com
- Hwang, Y. K., Ma, J., Choi, B. R., Cui, C. A., Jeon, W. K., Kim, H., Kim, H. Y., Han, S. H. and Han, J. S. (2011) Effects of Scutellaria baicalensis on chronic cerebral hypoperfusion-induced memory impairments and chronic lipopolysaccharide infusion-induced memory impairments. J. Ethnopharmacol. 137, 681-689. https://doi.org/10.1016/j.jep.2011.06.025
- Jain, N. K., Patil, C. S., Kulkarni, S. K. and Singh, A. (2002) Modulatory role of cyclooxygenase inhibitors in aging- and scopolamine or lipopolysaccharide-induced cognitive dysfunction in mice. Behav. Brain Res. 133, 369-376. https://doi.org/10.1016/S0166-4328(02)00025-6
- Jin, S. H., Park, J. K., Nam, K. Y., Park, S. N. and Jung, N. P. (1999) Korean red ginseng saponins with low ratios of protopanaxadiol and protopanaxatriol saponin improve scopolamine-induced learning disability and spatial working memory in mice. J. Ethnopharmacol. 66, 123-129. https://doi.org/10.1016/S0378-8741(98)00190-1
- Joo, S. S., Yoo, Y. M., Ahn, B. W., Nam, S. Y., Kim, Y. B., Hwang, K. W. and Lee, I. (2008) Prevention of inflammation-mediated neurotoxicity by Rg3 and its role in microglial activation. Biol. Pharm. Bull. 31, 1392-1396. https://doi.org/10.1248/bpb.31.1392
- Kang, K. S., Kim, H. Y., Yamabe, N., Park, J. H. and Yokozawa, T. (2007) Preventive effect of 20(S)-ginsenoside Rg3 against lipopolysaccharide-induced hepatic and renal injury in rats. Free Radic. Res. 41, 1181-1188. https://doi.org/10.1080/10715760701581740
- Kelloff, G. J., Crowell, J. A., Steele, V. E., Lubet, R. A., Malone, W. A., Boone, C. W., Kopelovich, L., Hawk, E. T., Lieberman, R., Lawrence, J. A., Ali, I., Viner, J. L. and Sigman, C. C. (2000) Progress in cancer chemoprevention: development of diet-derived chemopreventive agents. J. Nutr. 130, 467S-471S. https://doi.org/10.1093/jn/130.2.467S
- Kim, J. H., Kang, S. A., Han, S. M. and Shim, I. (2009) Comparison of the antiobesity effects of the protopanaxadiol- and protopanaxatriol-type saponins of red ginseng. Phytother. Res. 23, 78-85. https://doi.org/10.1002/ptr.2561
- Kim, N. H., Kim, K. Y., Jeong, H. J. and Kim, H. M. (2011) Antidepressant-like effect of altered Korean red ginseng in mice. Behav. Med. 37, 42-46. https://doi.org/10.1080/08964289.2011.566591
- Kitazawa, M., Oddo, S., Yamasaki, T. R., Green, K. N. and LaFerla, F. M. (2005) Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease. J. Neurosci. 25, 8843-8853. https://doi.org/10.1523/JNEUROSCI.2868-05.2005
- Kumar, A., Seghal, N., Padi, S. V. and Naidu, P. S. (2006) Differential effects of cyclooxygenase inhibitors on intracerebroventricular colchicine-induced dysfunction and oxidative stress in rats. Eur. J. Pharmacol. 551, 58-66. https://doi.org/10.1016/j.ejphar.2006.08.076
- Lee, J. W., Lee, Y. K., Yuk, D. Y., Choi, D. Y., Ban, S. B., Oh, K. W. and Hong, J. T. (2008) Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J. Neuroinflammation 5, 37. https://doi.org/10.1186/1742-2094-5-37
- Lee, B., Park, J., Kwon, S., Park, M. W., Oh, S. M., Yeom, M. J., Shim, I., Lee, H. J. and Hahm, D. H. (2010) Effect of wild ginseng on scopolamine-induced acetylcholine depletion in the rat hippocampus. J. Pharm. Pharmacol. 62, 263-271. https://doi.org/10.1211/jpp.62.02.0015
- Lee, B., Shim, I., Lee, H. and Hahm, D. H. (2012) Effect of ginsenoside Re on depression-and anxiety-like behaviors and cognition memory deficit induced by repeated immobilization in rats. J. Microbiol. Biotechnol. 22, 708-720. https://doi.org/10.4014/jmb.1112.12046
- Lukiw, W. J. and Bazan, N. G. (2000) Neuroinflammatory signaling upregulation in Alzheimer's disease. Neurochem. Res. 25, 1173-1184. https://doi.org/10.1023/A:1007627725251
- Min, S. S., Quan, H. Y., Ma, J., Han, J. S., Jeon, B. H. and Seol, G. H. (2009) Chronic brain inflammation impairs two forms of long-term potentiation in the rat hippocampal CA1 area. Neurosci. Lett. 456, 20-24. https://doi.org/10.1016/j.neulet.2009.03.079
- Miwa, M., Tsuboi, M., Noguchi, Y., Enokishima, A., Nabeshima, T. and Hiramatsu, M. (2011) Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2. J. Neuroinflammation 8, 153.
- Mrak, R. E. (2009) Neuropathology and the neuroinflammation idea. J. Alzheimers Dis. 18, 473-481. https://doi.org/10.3233/JAD-2009-1158
- Park, S. M., Choi, M. S., Sohn, N. W. and Shin, J. W. (2012) Ginsenoside Rg3 attenuates microglia activation following systemic lipopolysaccharide treatment in mice. Biol. Pharm. Bull. 35, 1546-1552. https://doi.org/10.1248/bpb.b12-00393
- Paxinos, G. and Watson, C. (1986) The rat brain in stereotaxic coordinates. pp.54-85. Academic Press., New York.
- Sayyah, M., Javad-Pour, M. and Ghazi-Khansari, M. (2003) The bacterial endotoxin lipopolysaccharide enhances seizure susceptibility in mice: involvement of proinflammatory factors: nitric oxide and prostaglandins. Neuroscience 122, 1073-1080. https://doi.org/10.1016/j.neuroscience.2003.08.043
- Schwab, C. and McGeer, P. L. (2008) Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders. J. Alzheimers Dis. 13, 359-369. https://doi.org/10.3233/JAD-2008-13402
- Stepanichev, M. Y., Zdobnova, I. M., Yakovlev, A. A., Onufriev, M. V., Lazareva, N. A., Zarubenko, II. and Gulyaeva, N. V. (2003) Effects of tumor necrosis factor-alpha central administration on hippocampal damage in rat induced by amyloid beta-peptide (25-35). J. Neurosci. Res. 71, 110-120. https://doi.org/10.1002/jnr.10469
- Szekely, C. A., Breitner, J. C., Fitzpatrick, A. L., Rea, T. D., Psaty, B. M., Kuller, L. H. and Zandi, P. P. (2008) NSAID use and dementia risk in the cardiovascular health study: role of ApoE and NSAID type. Neurology 70, 17-24. https://doi.org/10.1212/01.wnl.0000284596.95156.48
- Tian, J., Fu, F., Geng, M., Jiang, Y., Yang, J., Jiang, W., Wang, C. and Liu. K. (2005) Neuroprotective effect of 20(S)-ginsenoside Rg3 on cerebral ischemia in rats. Neurosci. Lett. 374, 92-97. https://doi.org/10.1016/j.neulet.2004.10.030
- Tode, T., Kikuchi, Y., Hirata, J., Kita, T., Nakata, H. and Nagata, I. (1999) Effect of Korean red ginseng on psychological functions in patients with severe climacteric syndromes. Int. J. Gynaecol. Obstet. 67, 169-174. https://doi.org/10.1016/S0020-7292(99)00168-X
- Wang, Y., Liu, J., Zhang, Z., Bi, P., Qi, Z. and Zhang, C. (2011) Anti-neuroinflammation effect of ginsenoside Rbl in a rat model of Alzheimer disease. Neurosci. Lett. 487, 70-72. https://doi.org/10.1016/j.neulet.2010.09.076
- Wang, Q., Sun, L. H., Jia, W., Liu, X. M., Dang, H. X., Mai, W. L., Wang, N., Steinmetz, A., Wang, Y. Q. and Xu, C. J. (2010) Comparison of ginsenosides Rg1 and Rb1 for their effects on improving scopolamine-induced learning and memory impairment in mice. Phytother. Res. 24, 1748-1754. https://doi.org/10.1002/ptr.3130
- Yin, P., Li, Z., Wang, Y. Y., Qiao, N. N., Huang, S. Y., Sun, R. P. and Wang, J. W. (2013) Neonatal immune challenge exacerbates seizure-induced hippocampus-dependent memory impairment in adult rats. Epilepsy Behav. 27, 9-17. https://doi.org/10.1016/j.yebeh.2012.12.015
- Zhao, H. F., Li, Q. and Li, Y. (2011) Long-term ginsenoside administration prevents memory loss in aged female C57BL/6J mice by modulating the redox status and up-regulating the plasticity-related proteins in hippocampus. Neuroscience 183, 189-202. https://doi.org/10.1016/j.neuroscience.2011.03.048
- Zipp, F. and Aktas, O. (2006) The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci. 29, 518-527. https://doi.org/10.1016/j.tins.2006.07.006
Cited by
- The impact of ginsenosides on cognitive deficits in experimental animal studies of Alzheimer’s disease: a systematic review vol.15, pp.1, 2015, https://doi.org/10.1186/s12906-015-0894-y
- Suppressive Effect of Ginsenoside Rg3 against Lipopolysaccharide-Induced Depression-Like Behavior and Neuroinflammation in Mice vol.65, pp.32, 2017, https://doi.org/10.1021/acs.jafc.7b02386
- The psychopharmacological activities of Vietnamese ginseng in mice: characterization of its psychomotor, sedative–hypnotic, antistress, anxiolytic, and cognitive effects vol.41, pp.2, 2017, https://doi.org/10.1016/j.jgr.2016.03.005
- Antidepressant-like effects of ginsenoside Rg3 in mice via activation of the hippocampal BDNF signaling cascade vol.71, pp.2, 2017, https://doi.org/10.1007/s11418-016-1066-1
- Ginsenoside Rg3 ameliorates lipopolysaccharide-induced acute lung injury in mice through inactivating the nuclear factor-κB (NF-κB) signaling pathway vol.34, 2016, https://doi.org/10.1016/j.intimp.2016.02.011
- Inhibition of hypoxia-induced cyclooxygenase-2 by Korean Red Ginseng is dependent on peroxisome proliferator-activated receptor gamma vol.41, pp.3, 2017, https://doi.org/10.1016/j.jgr.2016.04.001
- Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer’s disease: A review vol.75, 2017, https://doi.org/10.1016/j.bioorg.2017.09.004
- Chronic treatment with ginsenoside Rg1 promotes memory and hippocampal long-term potentiation in middle-aged mice vol.292, 2015, https://doi.org/10.1016/j.neuroscience.2015.02.031
- Anti-Inflammatory Effects of Ginsenoside Rg3 via NF-κB Pathway in A549 Cells and Human Asthmatic Lung Tissue vol.2016, 2016, https://doi.org/10.1155/2016/7521601
- Ginsenoside Rg1 ameliorates hippocampal long-term potentiation and memory in an Alzheimer's disease model vol.13, pp.6, 2016, https://doi.org/10.3892/mmr.2016.5103
- ATF-2/CREB/IRF-3-targeted anti-inflammatory activity of Korean red ginseng water extract vol.154, pp.1, 2014, https://doi.org/10.1016/j.jep.2014.04.008
- Spermine reverses lipopolysaccharide-induced memory deficit in mice vol.12, pp.1, 2015, https://doi.org/10.1186/s12974-014-0220-5
- Characterization of the changes in eicosanoid profiles of activated macrophages treated with 20(S)-ginsenoside Rg3 vol.1065-1066, 2017, https://doi.org/10.1016/j.jchromb.2017.09.002
- Glucosylceramide attenuates the inflammatory mediator expression in lipopolysaccharide-stimulated RAW264.7 cells vol.35, pp.3, 2015, https://doi.org/10.1016/j.nutres.2015.01.001
- A Role of Ginseng and Its Constituents in the Treatment of Central Nervous System Disorders vol.2016, 2016, https://doi.org/10.1155/2016/2614742
- Evaluation of structure–activity relationships of ginsenosides against amyloid β induced pathological behaviours in transgenic Caenorhabditis elegans vol.7, pp.64, 2017, https://doi.org/10.1039/C7RA05717B
- Simultaneous determination of 14 bioactive compounds in Samchulkunbi-tang using HPLC-DAD and LC-MS vol.6, pp.15, 2014, https://doi.org/10.1039/C4AY00386A
- Role of ginsenosides, the main active components of Panax ginseng , in inflammatory responses and diseases vol.41, pp.4, 2017, https://doi.org/10.1016/j.jgr.2016.08.004
- Pharmacological Effects of Active Components of Chinese Herbal Medicine in the Treatment of Alzheimer's Disease: A Review vol.44, pp.08, 2016, https://doi.org/10.1142/S0192415X16500853
- Ginsenoside-Rp1-induced apolipoprotein A-1 expression in the LoVo human colon cancer cell line vol.38, pp.4, 2014, https://doi.org/10.1016/j.jgr.2014.06.003
- Lipopolysaccharide-induced memory impairment in rats is preventable using 7-nitroindazole vol.73, pp.9, 2015, https://doi.org/10.1590/0004-282X20150121
- Red ginseng represses hypoxia-induced cyclooxygenase-2 through sirtuin1 activation vol.22, pp.6, 2015, https://doi.org/10.1016/j.phymed.2015.03.005
- Stereoselective pharmacokinetic and metabolism studies of 20(S)- and 20(R)-ginsenoside Rg 3 epimers in rat plasma by liquid chromatography-electrospray ionization mass spectrometry vol.121, 2016, https://doi.org/10.1016/j.jpba.2016.01.020
- Ginsenoside Rg3 Improves Recovery from Spinal Cord Injury in Rats via Suppression of Neuronal Apoptosis, Pro-Inflammatory Mediators, and Microglial Activation vol.22, pp.1, 2017, https://doi.org/10.3390/molecules22010122
- 20( R )-Ginsenoside Rg3 protects SH-SY5Y cells against apoptosis induced by oxygen and glucose deprivation/reperfusion vol.27, pp.16, 2017, https://doi.org/10.1016/j.bmcl.2017.06.045
- In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1K, prepared from Panax ginseng vol.41, pp.1, 2017, https://doi.org/10.1016/j.jgr.2015.12.009
- Stereoisomers of Saponins in Panax notoginseng (Sanqi): A Review vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00188
- Gypenosides attenuate lipopolysaccharide-induced neuroinflammation and anxiety-like behaviors in rats vol.22, pp.5, 2018, https://doi.org/10.1080/19768354.2018.1517825
- Gypenosides Attenuate Lipopolysaccharide-Induced Neuroinflammation and Memory Impairment in Rats vol.2018, pp.1741-4288, 2018, https://doi.org/10.1155/2018/4183670
- The anxiolytic-like effects of ginsenoside Rg3 on chronic unpredictable stress in rats vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-26146-5
- KCCM 12010P isolated from kimchi vol.53, pp.5, 2018, https://doi.org/10.1111/ijfs.13713
- Ginsenoside Rg3 Decreases Fibrotic and Invasive Nature of Endometriosis by Modulating miRNA-27b: In Vitro and In Vivo Studies vol.7, pp.None, 2013, https://doi.org/10.1038/s41598-017-17956-0
- Management of oxidative stress and other pathologies in Alzheimer’s disease vol.93, pp.9, 2013, https://doi.org/10.1007/s00204-019-02538-y
- Botanicals as modulators of depression and mechanisms involved vol.14, pp.None, 2019, https://doi.org/10.1186/s13020-019-0246-9
- 산삼 부정배양근의 진세노사이드 함량 증진과 성분 변환 vol.28, pp.6, 2013, https://doi.org/10.7783/kjmcs.2020.28.6.445
- The Effects of New Zealand Grown Ginseng Fractions on Cytokine Production from Human Monocytic THP-1 Cells vol.26, pp.4, 2021, https://doi.org/10.3390/molecules26041158
- Effect of Korean Red Ginseng and Rg3 on Asian Sand Dust-Induced MUC5AC, MUC5B, and MUC8 Expression in Bronchial Epithelial Cells vol.26, pp.7, 2013, https://doi.org/10.3390/molecules26072002
- Ginsenoside Absorption Rate and Extent Enhancement of Black Ginseng (CJ EnerG) over Red Ginseng in Healthy Adults vol.13, pp.4, 2013, https://doi.org/10.3390/pharmaceutics13040487
- The promising therapeutic potentials of ginsenosides mediated through p38 MAPK signaling inhibition vol.7, pp.11, 2013, https://doi.org/10.1016/j.heliyon.2021.e08354
- Administration of red ginseng regulates microRNA expression in a mouse model of endometriosis vol.48, pp.4, 2013, https://doi.org/10.5653/cerm.2021.04392