DOI QR코드

DOI QR Code

2D 배열형 초음파 트랜스듀서의 설계 및 제작

Design and Fabrication of a 2D Array Ultrasonic Transducer

  • 투고 : 2013.04.11
  • 심사 : 2013.06.17
  • 발행 : 2013.09.30

초록

본 논문에서는 $48{\times}64$ 채널로 이루어진 압전단결정 2D 배열형 초음파 트랜스듀서의 설계, 제작 및 평가를 하였다. 전기적 연결이 용이한 평면배열 구조를 선정한 후, 그에 맞게 구성소자를 제작하였다. 유한요소 해석을 통하여 트랜스듀서의 세부 구조를 설계하였다. 트랜스듀서의 성능을 향상시키기 위해 치폭의 너비와 재료를 조절하여 소자간 상호간섭을 저감하고, 압전단결정 및 정합층의 최적 두께를 설계하여 목표 주파수 대역폭을 구현하였다. 설계에 따라 트랜스듀서의 시작품을 제작하고 그 특성을 측정한 후, 측정된 결과를 유한요소 해석 결과와 비교하여 개발된 트랜스듀서의 성능을 평가하였다.

In this paper, a $48{\times}64$ channel 2D array ultrasonic transducer with piezoelectric single crystals was designed, fabricated, and evaluated. Structure of the transducer was chosen to facilitate the electric connection on the planar array, and then components were fabricated in accordance with the structure. Detailed structure of the transducer was designed through finite element analyses. In order to improve the performance of the transducer, the crosstalk between adjacent elements was reduced through the control of kerf width and material, and the target frequency bandwidth was achieved through optimal design of the thickness of the single crystal and matching layers. After fabricating a prototype of the transducer according to the design and measuring its characteristics, the results were compared with those of finite element analyses to evaluate the performance of the developed transducer.

키워드

참고문헌

  1. A. Nguyen-Dinh, P. Mauchap, N. Felx, R. Dufait, P. Auclair, and A. Flesch, "Integrated mechanism based multiplaned/3D ultrasonic imaging probes," in Proc. IEEE Ultrason. Symp., 1147-1150 (2001).
  2. R. Canals, G. Lamarque, and P. Chatain, "Volumetric ultrasound system for left ventricle motion imaging," IEEE Trans. Ultrason, Ferroelect., Freq. Contr. 46, 1527-1538 (1999). https://doi.org/10.1109/58.808877
  3. H. Eun, S. Lee, and Y. Roh, "Design and fabrication of a 3-dimensional diagnostic ultrasonic probe" (in Korean), J. Acous. Soc. Kr. 21, 766-771 (2002).
  4. S. W. Smith, G. E. Trahey, and O. T. von Ramm, "Twodimensional arrays for medical ultrasound," in Proc. IEEE Ultrason. Symp. 628-628 (1991).
  5. R. L. Goldberg and S. W. Smith, "Multilayer piezoelectric ceramics for two-dimensional array transducers," IEEE Trans. Ultrason,, Ferroelect., Freq. Contr. 41, 761-771 (1994). https://doi.org/10.1109/58.308512
  6. S. S. Brunke and G. R. Lockwood, "Braod-bandwidth radiation pattern of sparse two-dimensional vernier arrays," IEEE Trans. Ultrason,, Ferroelect., Freq. Contr. 44, 1101-1109 (1997). https://doi.org/10.1109/58.655635
  7. P. K. Weber, R. M. Schmitt, B. D. Tylkowksi, and J. Steck, "Optimization of random sparse 2-D transducer arrays for 3-D electronic beam steering and focusing," in Proc. IEEE Ultrason. Symp. 1503-1506 (1994).
  8. D. F. Lemmerhirt, X. Cheng, R. D. White, C. A. Rich, M. Zhang, J. B. Fowlkes, and O. D. Kripfgans, "A 32 X 32 capacitive micromachined ultrasonic transducer arrays manufactured in standard CMOS," IEEE Trans. Ultrason, Ferroelect., Freq. Contr. 59, 1266-1271 (2012).
  9. W. Lee and Y. Roh, "New design of the kerfs of an ultrasonic two-dimensional array transducer to minimize cross-talk," Jpn. J. Appl. Phys. 49, 07HD06, 2010.
  10. W. Lee and Y. Roh, "Design and fabrication of a 1.75D ultrasonic transducer" (in Korean), J. Acoust. Soc. Kr. 32, 199-207 (2013). https://doi.org/10.7776/ASK.2013.32.3.199
  11. R. E. Davidsen and S. W. Smith, "Two-dimensional arrays for medical ultrasound using multilayer flexible circuit interconnection," IEEE Trans. Ultrason,, Ferroelect., Freq. Contr. 45, 338-348 (1998). https://doi.org/10.1109/58.660144
  12. L. Daane and M. Greenstein, "A demountable interconnect system for a 50 X 50 ultrasonic imaging transducer array," IEEE Trans. Ultrason,, Ferroelect., Freq. Contr. 44, 978-982 (1997). https://doi.org/10.1109/58.655622
  13. N. N. Abboud, G. L. Wojcik, D. K. Vaughan, J. Mould, D. J. Powell, and L. Nikodym, "Finite element modeling for ultrasonic transducers," in Proc. SPIE Int. Symp. Medical Imaging, (1998).